Бизнес идеи с нуля

Тип двигателя(Удельный импульс). Удельная тяга, или удельный импульс Удельный импульс

Всем, наверное, известно, что космос в основном состоит из вакуума. И в этом вакууме практически нет ничего, от чего можно было бы оттолкнуться, как мы отталкиваемся от пола чтобы идти. А раз так, то чтобы менять своё движение нужным нам образом, нам нужно что-то из себя выбрасывать. Ну и, наконец, всем известно, что транспорт, умеющий так делать, называется ракетой.
Ракеты придумали очень и очень давно, более полутора тысяч лет назад. Но серьёзно теоретически разобраться в теории реактивного движения смогли только к самому концу XIX века. В частности именно тогда великий русский учёный Константин Эдуардович Циолковский вывел свою знаменитую формулу:

здесь V - это конечная скорость ракеты, I - удельный импульс, M - масса заправленной ракеты, а m - масса ракеты без топлива (или иного рабочего тела).

Удельный импульс - это отношение тяги двигателя к расходу топлива или иного рабочего тела. В системе СИ расход мы измеряем в кг/с, а тягу - в ньютонах. Ньютон, в свою очередь, равен кг*м/с 2 . В результате получаем, что удельный импульс измеряется, как и скорость, в метрах в секунду. По сути он и есть скорость - эффективная скорость струи рабочего тела, вырывающегося из сопла двигателя.
Есть и другое определение удельного импульса: время, в течении которого с помощью 1 кг топлива (или иного рабочего тела) двигатель сможет создавать тягу 1 кгс (килограмм-сила). Тогда он измеряется в секундах.
В формулу Циолковского надо подставлять удельный импульс из первого определения, но второе определение часто удобнее в расчётах. Если мы хотим перевести один вариант удельного импульса в другой, то можно пользоваться простой формулой: 1 м/с = 9,81 с. Хотя чаще всего её ещё сильнее упрощают до: 1 м/с = 10 с. Я здесь буду использовать именно последнюю. Разумеется, обе формулы применимы только для удельного импульса, переводить время "убегания" молока в необходимую для спасения плиты скорость бега повара по ним не стоит:-)

Что же такого интересного в этой формуле? Вполне очевидные вещи: чем быстрее струя газа и больше топлива в ракете - тем быстрее она полетит.
А интересного в ней логарифм. Эта функция очень медленно увеличивается с ростом отношения масс под ним. Чтобы логарифм был равен 1, оно должно быть 2,72. Т.е. чтобы ракета "сухой" массой 10 т разогналась до скорости выбрасываемого ею рабочего тела, ей нужно более 17 т этого самого рабочего тела. Чтобы разогнать эту ракету до двух скоростей рабочего тела, топлива нужно уже 64 т. Для трёх - 191 т. Наконец, для четырёх скоростей рабочего тела потребуется уже 534 тонны рабочего тела. Очевидно, что разместить в ракете массой 10 т 534 тонны рабочего тела, т.е. в пятьдесят с лишним раз больше её собственной массы - это очень непростая задача. Четыре скорости истечения струи - это ориентировочный технический предел скорости ракеты.

Разумеется, здесь не учитывается гравитация. Она сильно тормозит ракету при удалении от Земли или от Солнца, зато разгоняет ракету при приближении к Земле и Солнцу, а также при пролёте мимо планет по определённым траекториям (пролёт по другим траекториям может затормозить). В результате после выключения двигателей ракет-носителей их скорость меньше той, что можно рассчитать по этой формуле, но максимальная скрость, когда-либо достигнутая космическим аппаратом, в несколько раз превосходит ту, которую ему может сообщить современная ракета. Но сейчас это для нас не имеет значения.

Ну так к чему же я всё это? А к тому, на сколько важен удельный импульс.
Допустим, нам нужно развить скорость 18 км/с. Примерно столько нужно для полёта за пределы Солнечной системы (точная скорость, необходимая для такого полёта, зависит от того, в каком направлении мы стартуем).
Пусть удельный импульс двигателя нашей ракеты 450 с или 4500 м/с. Это соответствует лучшим жидкостным ракетным двигателям и близко к теоретическому пределу для химических двигателей (если не использовать слишком токсичные компоненты типа фтора).
В таком случае для разгона ракеты массой 10 т потребуются как раз те самые 534 тонны топлива и окислителя (в данном случае - жидких кислорода и водорода). Заправленная ракета будет весить при старте 544 тонны и лишь 10 разгонятся до нужной нам скорости...
А если сделать удельный импульс всего в два раза больше: 900 с или 9000 м/с? Тогда для разгона ракеты массой 10 т потребуется только 64 тонны рабочего тела! Т.е. ракета при старте будет весить лишь 74 тонны! Если же при старте ракета будет весить теже 544 т, то разгонятся до 18 км/с уже более 73-х тонн!
Таким образом двукратное увеличение удельного импульса позволяет разогнать в семь с лишним раз больше груза, потратив меньше рабочего тела.
А что если у нас будет удельный импульс 1350 с или 13 500 м/с? Плучим 28 т рабочего тела на 10 т массы ракеты, т.е. 38 т стартовой массы. Или возможность разогнать до 18 км/с 143 тонны из 544 тонн стартовой массы.
Наконец, давайте помечтаем о 3600 с или 36 000 м/с... 6,5 т рабочего тела на разгон 10 т, т.е. 16,5 т стартовой массы. Или разгон 330 т из 544 стартовых.
Повышение удельного импульса в 2 раза улучшает нашу ракету (снижает стартовую массу или повышает разгоняемую) в 7,3 раза, повышение в 3 раза - в 14,3 раза, а повышение в 8 раз - улучшение в 33 раза!

Но как нам достичь такого удельного импульса?..
Наверняка многие слышали про плазменные и ионные двигатели, а может и про электроракетные двигатели вообще. В таких двигателях для разгона рабочего тела используется не заключённая в самом рабочем теле, а подводимая извне энергия. Благодаря этому такие двигатели принципиально не имеют ограничения по удельному импульсу. Хоть 1 000 000 м/с! Вот только одно НО...
При удельном импульсе в 450 с на разгон 1 кг до тех самых 18 км/с мы потратим примерно 541 МДж энергии. При 900 с - 259 МДж. При 1350 с - 255 МДж. Пока всё хорошо. А вот дальше дело хуже... При 3600 с - 421 МДж. Дальнейший рост удельного импульса приведёт к ещё большему росту энергозатрат, т.к. масса рабочего тела уже будет уменьшаться не так быстро, как будет расти квадрат его скорости. Минимальна эта энергия будет при удельном импульсе, равном примерн 0,63 от конечной скорости. В нашем случае это 1130 с или 11 300 м/с.
"Ну и что? - справедливо спросит читатель - Ведь сейчас мы тратим 541 МДж, а при 3600 с будем тратить лишь 421!"
А то, что сейчас все эти 541 МДж содержатся в самом рабочем теле, а в случае электроракетных двигателей нам их нужно подводить извне...
Химические источники тока, очевидно, тут не имеют смысла: чем превращать водород и кислород в воду в топливном элементе (который отнюдь не лёгкий), чтобы запитать от него ионный двигатель, который будет разгонять какой-нибудь ксенон, куда проще и эффективнее сразу сжечь водород в камере сгорания обычного ЖРД. Солнечные батареи потенциально имеют неограниченый запас энергии, но их мощность весьма мала, так что и тяга у двигателя будет мала. Да ещё и весят эти батареи много. Так что они подходят только для питания двигателей корректировки орбиты спутников. Если мы хотим отправить к другим планетам человека, нам потребуется что-то другое...
Ядерный реактор - отличное решение. Он содержит много энергии, может иметь большую мощность и при этом относительно небольшую массу. Сейчас уже есть проект мощного плазменного двигателя с питанием от ядерного реактора, который планируется использовать для полёта на Марс (VASIMR). Но, увы, система эта далека от идеала... Всё-таки даже ядерный реактор имеет не на столько большое соотношение мощности и массы, чтобы было целесообразно делать ионный двигатель с очень большим удельным импульсом. Увеличим импульс - снизим немного массу рабочего тела, но сильно увеличим массу реактора... Да и всё равно такая система обеспечит ускорение не больше 0,1 м/с 2 . Разгон будет долгим, а про старт с поверхности Земли даже речи не идёт.

Так что же делать?.. Всё просто: нужно выкинуть лишние звенья в цепи передачи энергии от реактора к рабочему телу! В идеале - до нуля. Рабочее тело должно получать энергию от реактора напрямую. И такие системы были созданы. Рельно созданные "в металле" советские и американские ядерные ракетные двигатели на испытаниях вполне достигли удельного импульса в районе 900 секунд! В них жидкий водород проходил через раскалённую до тысяч градусов (но всё ещё твёрдую) активную зону реактора, где он испарялся и нагревался, после чего выбрасывался через сопло.
Рассчёты показывают, что если сделать реактор, рассчитанный на плавление активной зоны, то 1350 секунд - отнюдь не предел удельного импульса. И такие реакторы вполне можно создать при современном уровне технологий.
Наконец, есть проекты и газофазных ядерных ракетных двигателей... В них уран будет испаряться, а удельный импульс будет те самые 3600 секунд или даже ещё выше - до 4500 секунд.
При этом ядерные ракетные двигатели не только гипотетически могут, но и реально работали в атмосфере, а их тяга может в разы превышать их вес, делая возможным старт прямо с Земли.
Жаль, что работы по таким двигателям давно не получают должного финансирования... Думаю, уже вполне очевидно, сколь огромные преимущества даёт даже 2-3-х кратное повышение удельного импульса, не говоря уж о его увеличении в 8, а то и 10 раз.

Но 4500 секунд - это предел для удельного импульса достаточно мощных (способных обеспечить ракете ускорение более 0,1 м/с 2) двигателей или нет?.. Теоретически - нет.
При термоядерных реакциях продукты реакции разлетаются в стороны со скоростью более 10 000 000 м/с, т.е. удельный импульс гипотетического термоядерного ракетного двигателя может составлять 1 000 000 или даже 1 500 000 секунд. И, что самое приятное, энергия для разгона рабочего тела в нём снова содержится в самом рабочем теле! Кстати, технический предел скорости для ракеты с таким двигателем может достигать 20% от скорости света...
Увы, пока термоядерные исследования не зашли достаточно далеко для создания термоядерного ракетного двигателя. С другой стороны, есть все основания считать, что создать его будет даже проще, чем термоядерную элеткростанцию. При старте с орбиты (а в атмосфере, увы, такие двигатели работать не будут) у нас не будет проблем с созданием и поддержанием вакума, двигателю не нужно непрерывно работать месяцами, как реакторам электростанций, наконец, нам не обязательно, чтобы он давал нам электроэнергию! Для питания самого корабля можно использовать отдельный ядерный реактор, а термоядерный пусть питает только самого себя.
При удельном импульсе даже всего 450 000 секунд ракета со стартовой массой 11 т, из которых лишь 1 т будет приходится на термоядерное топливо, разгонится почти до 430 км/с. Если мы хотим корабль разогнать, затормозить, потом снова разогнать и снова затормозить без дозаправки, то того же соотношения (11 т при старте, из них 1 т топливо) хватит для полёта на скорости более 100 км/с. Если взять стартовую массу 12 т из которых 2 т - термояденое топливо, то скорость такого полёта (туда и обратно) составит уже 200 км/с. Так за месяц можно успеть слетать на Марс, поработать там пару недель, и вернуться домой...

Так что, дорогие читатели, освоение Солнечной системы уже ближе, чем на горизонте:-)

Удельный импульс тяги

ракетного двигателя, удельный импульс ракетного двигателя, - отношение тяги ракетного двигателя к секундному массовому расходу рабочего тела (производная от импульса тяги по расходуемой массе в данном интервале времени). Выражается в Н(·)с/кг = м/с. На расчётном режиме работы двигателя совпадает со скоростью реактивной струи. Энергетический показатель эффективности двигателя.

  • - см. Тяговое усилие...

    Сельскохозяйственный словарь-справочник

  • - 1) побуждение, толчок, стремление; побудительная причина; 2) мера механического движения; то же, что количество движения; 3) импульс силы - мера действия силы за некоторый промежуток времени...

    Начала современного Естествознания

  • - устройство, вызывающее прекращение работы основной горелки или основной и запальной горелок, когда продукты сгорания выходят через стабилизатор тяги в помещение...

    Строительный словарь

  • - отклонение реактивной струи ТРД или струи, образуемой при вращении винта ТВД от направления, соответствующего крейсерскому режиму полёта, для создания дополнительной подъёмной, управляющей...

    Энциклопедия техники

  • - ракетного двигателя - см. в ст. Удельная тяга....

    Большой энциклопедический политехнический словарь

  • - линия, перпендикулярная плоскости вращения пропеллера. Она совпадает с осью пропеллера...

    Морской словарь

  • - проволока и трос, служащие для управления на расстоянии стрелками, семафорами, предупредительными дисками и приводными замками; тяги эти обхватывают шкив 1 переводного рычага и шкив 6 сигнального привода...
  • - отличается от силы тяги на крюке тем, что последняя относится к равномерному движению поезда, между тем как первая м. б. замерена при наличии как ускорения, так и замедления...

    Технический железнодорожный словарь

  • - воображаемая внешняя сила Fi килограммов, прилагаемая от рельсов к движущим колесам паровоза и определяемая из того условия, что ее работа за один оборот движущих колес равна работе пара в цилиндрах паровозной...

    Технический железнодорожный словарь

  • - действительная сила тяги, приложенная к ободу движущих колес локомотива и для паровоза определяемая из того условия, что ее работа за один оборот движущих колес равна полной работе пара, произведенной в цилиндрах...

    Технический железнодорожный словарь

  • - разъемная головка в виде двух половин, надеваемая на эксцентрик. Одна из половин приболчивается или составляет одно целое с эксцентриковой тягой...

    Технический железнодорожный словарь

  • - 1...

    Телекоммуникационный словарь

  • - прибор, автоматически устанавливающий силу тяги в топке и дымоходах парового котла в зависимости от изменений нагрузки котла...

    Морской словарь

  • - ракетного двигателя, показатель эффективности ракетного двигателя; идентичен удельной тяге...

    Большая Советская энциклопедия

  • - См. МУЖ -...

    В.И. Даль. Пословицы русского народа

  • - Жарг. шк. Шутл. Физика (учебный предмет. ВМН 2003, 120...

    Большой словарь русских поговорок

"Удельный импульс тяги" в книгах

От тяги к хмельному

Из книги Заговоры сибирской целительницы. Выпуск 37 автора Степанова Наталья Ивановна

От тяги к хмельному Берут завязки, которыми перевязывали ноги покойнику, и опускают их в воду. Воду заговаривают в полночь и дают пьющему человеку. Для лечения женщины ритуал проводят в женские дни (среда, пятница, суббота); для лечения пьющего мужчины – в мужские дни

От тяги к спиртному

Из книги Заговоры сибирской целительницы. Выпуск 31 автора Степанова Наталья Ивановна

От тяги к спиртному Из письма:«Я вылечила своего сына по Вашей книге от пьянства, и он уже три года не пьет. Как-то при разговоре с ним он мне сказал, что когда он в компании или у кого-нибудь за столом на дне рождения или свадьбе, то ему на дух спиртное не нужно, но когда он

От тяги к наркотику

автора Степанова Наталья Ивановна

От тяги к наркотику В старину тоже были любители попить запаренную коноплю и мак. Сушили некоторые виды грибов, смешивали с беленой и постепенно становились зависимыми от наркотиков.Лечили таких наркоманов баней, постом, молитвой и травами.Бабушка знала множество

От тяги к хмелю

Из книги 7000 заговоров сибирской целительницы автора Степанова Наталья Ивановна

От тяги к хмелю Это очень сильный заговор. Читают его в последний день убыльного месяца. Нужно выйти на улицу и, глядя на звезды, говорить:Небо Божие, Божий Престол, а у раба Божия (имя) всегда накрыт стол. Спуститесь, звезды, в его бражную чашу, чтобы ему по хмельному не

Заговор от тяги к вину

Из книги Заговоры сибирской целительницы. Выпуск 34 автора Степанова Наталья Ивановна

Удельный вес

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Удельный вес Килограмм-сила на кубический метр (9,80665 Н/м3)Тонна-сила на кубический метр (9,80665

Удельный вес

БСЭ

Удельный импульс

Из книги Большая Советская Энциклопедия (УД) автора БСЭ

Удельный вес

Из книги Анализы. Полный справочник автора Ингерлейб Михаил Борисович

Удельный вес Удельный вес желчи в порциях А и С составляет обычно 1008–1012, в порции В –

От тяги к наркотикам

Из книги Большая защитная книга здоровья автора Степанова Наталья Ивановна

От тяги к наркотикам В старину тоже были любители попить запаренную коноплю и мак. Сушили некоторые виды грибов, смешивали с беленой и постепенно становились зависимыми от наркотиков.Лечили таких наркоманов баней, постом, молитвой и травами.Бабушка знала множество

Заговор от тяги к вину

Из книги 1777 новых заговоров сибирской целительницы автора Степанова Наталья Ивановна

Заговор от тяги к вину Шел Иисус Христос, нес три свечи, И как этим свечам в аду не гореть, Так и Божьему рабу (имя) О хмельном не скорбеть. Матерь Божья, запрети (такому-то) рабу Чашу с хмелем ко рту Подносить, в руки брать, Помоги ему о хмельном Не думать, не тосковать. Одна

4.2. Проблема тяги

Из книги автора

4.2. Проблема тяги Существует множество проектов колонизации и терраформирования Марса, которые очень любят обсуждать популяризаторы и научные журналисты. Довольно часто на телевизионных экранах можно увидеть фильмы, в которых высадка экспедиции на Марс представляется

Резиновые тяги

Из книги Учебник подводной охоты на задержке дыхания автора Барди Марко

Резиновые тяги Резиновые тяги определяют мощность арбалетного ружья, и, естественно, чтобы мощность была хорошей, нужны хорошие резинки. Но как же определить, являются ли они таковыми?Материал, используемый для производства резиновых трубок - это результат химического

Глава 19 ПРОБЛЕМА ТЯГИ

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Глава 19 ПРОБЛЕМА ТЯГИ Дальние межпланетные экспедиции и проблема тяги Общеизвестно, что на сегодняшний день основой космической экспансии человечества по-прежнему являются ракеты на жидком топливе. Однако имеющиеся в наличии и перспективные ракеты на жидком топливе, к

Конструкция тяги

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Конструкция тяги Тяга между передними и задними ногами изготовлена из прутка с резьбой 3 мм (см. рис. 11.10). В исходной конструкции длина тяги составляет 132 мм от центра до центра. Тяга вставляется в отверстия на передней и задней ноге робота и может быть закреплена с помощью

Имея в виду, что это, фактически, одна и та же характеристика. Удельная тяга применяется обычно во внутренней баллистике , в то время как удельный импульс - во внешней баллистике. Размерность удельного импульса есть размерность скорости, в системе единиц СИ это метр в секунду .

Определения

Уде́льный и́мпульс - характеристика реактивного двигателя , равная отношению создаваемого им импульса (количества движения) к расходу (обычно массовому, но может соотноситься и, например, с весом или объёмом) топлива. Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теоретически удельный импульс равен скорости истечения продуктов сгорания, фактически может от неё отличаться. Поэтому удельный импульс называют так же эффективной (или эквивалентной) скоростью истечения .

Уде́льная тя́га - характеристика реактивного двигателя, равная отношению создаваемой им тяги к массовому расходу топлива. Измеряется в метрах в секунду (м/с = Н·с/кг = кгс·с/т.е.м.) и означает, в данной размерности, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива (или тягу в 1 кгс, истратив при этом 1 т.е.м. топлива). При другом толковании удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²).

Формула приближенного расчета удельного импульса (скорости истечения) для реактивных двигателей на химическом топливе выглядит, как:

где T k - температура газа в камере сгорания (разложения); p k и p a - давление газа соответственно в камере сгорания и на выходе из сопла; y - молекулярный вес газа в камере сгорания; u - коэффициент, характеризующий теплофизические свойства газа в камере (обычно u ≈ 15 ). Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс .

Сравнение эффективности разных типов двигателей

Удельный импульс является важным параметром двигателя, характеризующим его эффективность. Эта величина не связана напрямую с энергетической эффективностью топлива и тягой двигателя, например, ионные двигатели имеют очень небольшую тягу, но благодаря высокому удельному импульсу находят применение в качестве маневровых двигателей в космической технике.

Характерный удельный импульс для разных типов двигателей
Двигатель Удельный импульс
м/сек сек
Газотурбинный реактивный двигатель 30 000 3 000
Твердотопливный ракетный двигатель 2 000 200

Содержание статьи

РАКЕТА, летательный аппарат, движущийся вследствие отбрасывания высокоскоростных горячих газов , создаваемых реактивным (ракетным) двигателем. В большинстве случаев энергия для движения ракеты получается при сгорании двух или более химических компонентов (горючее и окислитель, которые вместе образуют ракетное топливо) или при разложении одного высокоэнергетического химического вещества. Большинство ракет относятся к одному из двух типов – твердотопливному или жидкостному. Эти термины относятся к тому, в каком виде хранится топливо, прежде чем оно сгорит в камере ракетного двигателя. Ракета состоит из двигательной установки (двигателя и топливного отсека), систем управления и наведения, полезной нагрузки и некоторых вспомогательных систем.

ТЕОРИЯ ДВИЖЕНИЯ

Два всем знакомых примера поясняют принцип движения ракеты. При выстреле из ружья пороховые газы, расширяясь в стволе, толкают пулю вперед, а ружье назад. Пуля летит в цель, а стрелок (или лафет артиллерийского орудия) поглощают энергию отдачи за счет силы трения с поверхностью земли. Если бы стрелок стоял на коньках на льду, то из-за отдачи он покатился бы назад (и остановился только из-за трения с воздухом и льдом).

Другой пример – надутый воздушный шарик. Пока отверстие шарика закрыто, внутреннее давление воздуха уравновешивается силами упругости оболочки шарика. Если открыть отверстие, воздух будет выходить из шарика, и его неуравновешенное давление на оболочку будет толкать шарик вперед. Отметим, что шарик приводится в движение силой, действующей только на площадь отверстия. Все остальные силы, действующие на оболочку, уравновешены и не влияют на движение шарика, которое носит хаотичный характер из-за непрерывного изменения формы шарика и гибкости его горловины.

Ракетный двигатель работает аналогично, за исключением того, что за счет реакций горения или химического разложения обеспечивается устойчивый поток горячих газов, которые выбрасываются наружу через сопло. Существуют и другие методы получения реактивной струи газа (см. ниже ), однако ни один из них не получил такого широкого распространения, как химический.

Все рассмотренные выше примеры движения стрелка и пули, надутого шарика и ракеты описываются третьим законом движения Ньютона , который гласит, что всякое действие имеет противоположное и равное по величине противодействие. Математически этот закон выражается в виде равенства количеств движения MV = mv . Важно отметить, что полное изменение количества движения (импульса) в системе равно нулю. Если две массы M и m равны, то их скорости V и v также равны. Если масса одного из взаимодействующих тел больше массы другого, то его скорость будет соответственно меньше. В примере со стрелком импульс mv , сообщаемый пуле, в точности такой же, как и импульс MV , сообщаемый стрелку, однако из-за малой массы пули ее скорость намного больше, чем скорость стрелка. В случае ракеты выбрасывание газов в одном направлении (действие) вызывает движение ракеты в противоположном направлении (противодействие).

РАКЕТНЫЙ ДВИГАТЕЛЬ

Внутри работающего ракетного двигателя происходит интенсивный процесс быстрого контролируемого горения. Для осуществления реакции горения (выделения энергии при реакции двух химических веществ, в результате которой образуются продукты с меньшей скрытой энергией) необходимо наличие окислительного агента (окислителя) и восстановительного агента (горючего). При горении энергия выделяется в виде тепла, т.е. внутреннего движения атомов и молекул в результате повышения температуры.

Конструкция.

Ракетный двигатель состоит из двух основных частей: камеры сгорания и сопла. Камера должна иметь достаточный объем для полного смешения, испарения и сгорания компонентов топлива. Сама камера и система подачи топлива должны быть спроектированы таким образом, чтобы скорость газа в камере была ниже скорости звука, иначе горение будет неэффективным. Как и в случае надувного шарика, молекулы газа соударяются со стенками камеры и выходят через узкое отверстие (горловину сопла). При стеснении потока газа в сужающейся части сопла его скорость возрастает до скорости звука в горловине, а в расширяющейся части сопла поток газа становится сверхзвуковым. Сопло такой конструкции было предложено Карлом де Лавалем, шведским инженером, работавшим в области паровых турбин, в 1890-х годах.

Контур расширяющейся части сопла и степень его расширения (отношение площадей на выходе и в горловине) подбираются, исходя из скорости истечения газовой струи и давления окружающей среды, так что давление выхлопных газов на стенки сверхзвуковой части сопла увеличивает силу тяги, создаваемую давлением газов на переднюю часть камеры сгорания. Поскольку наружное (атмосферное) давление уменьшается с ростом высоты, а профиль расширяющейся части сопла можно оптимизировать только для одной высоты, степень расширения выбирается такой, чтобы обеспечить приемлемую эффективность для всех высот. Двигатель для малых высот должен иметь короткое сопло с небольшой степенью расширения. Разработаны сопла для регулируемой степени расширения. Однако на практике они оказываются слишком сложными и дорогими и поэтому редко используются.

Тяга и удельный импульс тяги.

Тяга двигателя F равна произведению давления, создаваемого выхлопными газами, на площадь выходного сечения сопла, за вычетом силы давления окружающей среды на ту же площадь. Эффективность двигателя оценивается его удельным импульсом I sp , который имеет несколько различных единиц измерения. Одна из единиц представляет собой тягу, деленную на полный секундный расход топлива (w ), т.е. I sp = F /w . Другая есть эффективная скорость истечения C , деленная на ускорение силы тяжести g , в этом случае I sp = C /g . Удельный импульс обычно выражают в секундах (в системе СИ I sp измеряется в НЧ с/кг или м/с), и в этом случае его величина равна числу килограммов тяги, получаемой при сгорании одного килограмма топлива. Величина I sp зависит от ряда факторов, главным образом от энергии, выделяемой при сгорании топлива, и эффективности использования этой энергии в двигателе (например, короткое коническое сопло в вакууме будет менее эффективно, чем длинное и тщательно спрофилированное).

Относительная начальная масса и характеристическая скорость ракеты.

Эти величины являются основными характеристиками ракеты как летательного аппарата. Относительная начальная масса представляет собой отношение начальной массы ракеты W к ее конечной массе после выгорания топлива w . Величина I sp зависит от конструктивного совершенства ракеты и эффективности ее двигателя; эти параметры определяют конечную скорость, которую развивает ракета. Характеристическая конечная скорость ракеты определяется по формуле Циолковского

V b 0 = (gI sp ln [W /w ]) – (V Lg + V Ld + V Lt ),

где V Lg , V Ld и V Lt – потери скорости (определяемые из дополнительных уравнений), связанные с силой тяжести, сопротивлением атмосферы и меньшей силы тяги в атмосфере.

Как видно из этой формулы, для повышения конечной скорости ракеты необходимо: 1) увеличивать относительную начальную массу (W/w ) за счет облегчения конструкции; 2) увеличивать удельный импульс за счет применения более высокоэнергетического топлива; 3) снижать лобовое сопротивление за счет улучшения обтекания и уменьшения размеров ракеты. Однако из-за того, что полетное задание ракеты (особенно космической) изменяется от полета к полету, а в процессе полета внешние условия непрерывно изменяются, при проектировании ракеты приходится идти на компромиссы.

Геометрия заряда может быть нейтральной, прогрессивной или регрессивной в зависимости от того, как должна изменяться тяга двигателя. Заряд нейтральной геометрии представляет собой сплошной литой цилиндрический стержень, который горит с одного конца (заряд торцевого горения). Специальные защитные покрытия препятствуют горению топлива с краев. Заряд прогрессивной геометрии обычно отливается в виде трубки; горение происходит на внутренней стороне (заряд канального горения). По мере выгорания такого заряда увеличиваются поверхность горения и, соответственно, тяга. Придавая каналу звездообразную форму, можно добиться того, чтобы скорость выгорания и тяга со временем уменьшались; конический канал позволяет плавно регулировать тягу.

Придавая заряду специальную форму или комбинируя несколько простых форм, можно получить нужный закон изменения тяги ракеты в полете. Для снаряда воздух – воздух, например, может использоваться заряд прогрессивной геометрии для получения больших ускорений, необходимых, чтобы осуществить перехват цели. В ракетах-носителях для космических полетов, с другой стороны, полезнее сочетание прогрессивной и регрессивной геометрий заряда, чтобы получить большую тягу на старте, когда ракета имеет максимальную массу и велико сопротивление атмосферы, и меньшую тягу в верхних слоях атмосферы, когда масса ракеты мала, а ускорения велики.

Состав и технология производства.

Твердотопливная смесь, наиболее часто используемая в США, – перхлорат аммония в качестве окислителя и алюминиевый порошок в качестве горючего с полимерным связующим, бутадиен-нитрильным каучуком (российское обозначение СКН – синтетический каучук нитрильный). Порошок оксида железа добавляется для регулирования скорости горения. Смеси этих компонентов в различных пропорциях используются для космических носителей, баллистических и тактических ракет. Эти топлива имеют удельный импульс от 280 до 300 с в зависимости от состава смеси. Продукты сгорания таких РДТТ содержат хлористый водород и частицы оксида алюминия.

Описанное выше топливо получают путем измельчения отдельных компонентов в мелкодисперсный порошок и последующего их смешения с эластичным СКН в специальных смесителях, по конструкции похожих на обычные промышленные тестомешалки. После того как смесь достаточно перемешана, она заливается в корпус двигателя. В двигатель вставляется специальная форма для получения нужной конфигурации заряда (этот процесс напоминает приготовление бисквитного торта). Затем заряд подвергается полимеризации при тщательно контролируемой температуре. После окончания процесса полимеризации вставка удаляется, и к корпусу крепятся сопло, устройство воспламенения и другие элементы, необходимые для запуска двигателя и полета ракеты.

Изготовление даже простейшего твердотопливного двигателя весьма опасно и требует тщательного контроля, в частности, защиты от статического электричества, использования неискрящих материалов и хорошей вентиляции паров и пыли для обеспечения безопасности рабочих. Производственные помещения для снаряжения РДТТ обычно разделены толстыми стенами и имеют слабые крыши, чтобы взрывная волна в случае аварии уходила вверх и не наносила большого ущерба.

Корпус твердотопливного двигателя обычно изготавливается путем сварки из высококачественных металлических сплавов или композиционных материалов, наматываемых вокруг оправки, повторяющей внешние обводы заряда топлива. Корпус должен иметь очень высокую прочность, чтобы противостоять внутреннему давлению при горении, особенно в конце полета. Когда корпус готов, он очищается и снабжается изоляцией для предотвращения прогара. Для лучшего контакта изоляции и заряда часто применяется связующее.

Одним из последних этапов изготовления твердотопливного двигателя является его проверка на наличие дефектов и инородных включений. Трещины в заряде служат дополнительными поверхностями горения, что может привести к увеличению тяги и изменению траектории полета. В худшем случае давление в камере сгорания может стать настолько большим, что двигатель разрушится. Процесс снаряжения двигателя завершается установкой пускового воспламенителя на его переднем днище и сопла на заднем. Пусковой воспламенитель обычно представляет собой небольшой ракетный двигатель, содержащий быстро сгорающее топливо, который выбрасывает факел пламени и поджигает заряд топлива.

Для некоторых военных приложений необходимы такие ускорения, которые не могут обеспечить двигатели на основе СКН; тогда применяются металлизированные смесевые топлива на основе нитроглицерина или других мощных взрывчатых веществ. В этих случаях в двигателе протекает контролируемый взрывной процесс. Для контроля за процессом взрыва добавляются специальные химические замедлители реакции. Другие военные нужды потребовали разработки тактических ракет с бездымным горением, чтобы не было возможности проследить, откуда запущена ракета.

Испытания.

РДТТ обычно испытываются на огневых стендах, где двигатель устанавливается неподвижно в горизонтальном или вертикальном положении и проверяется работа всех его систем. В процессе работы двигателя установленные на нем датчики измеряют тягу, давление и температуру продуктов сгорания, нагрузки на корпус и т.д. Во время огневых испытаний проверяются все возможные режимы работы, включая нерасчетные, которых не должно быть при нормальном полете.

Достоинства и недостатки.

Твердотопливные двигатели используются в тех случаях, когда основными требованиями являются простота, легкость обслуживания, быстрый запуск и большая мощность при небольшом объеме. В первых американских баллистических ракетах использовалось жидкое топливо, однако начиная с 1960-х годов произошел переход на твердое топливо, что было связано с улучшением технологии его производства. РДТТ всегда использовались в небольших боевых снарядах и ракетах, устройствах катапультирования на реактивных самолетах и для отделения ракетных ступеней.

Основным недостатком твердотопливных двигателей является практическая невозможность регулирования тяги во время полета, а также трудность отключения двигателя. В некоторых РДТТ отсечка тяги осуществляется путем открытия отверстий в передней части двигателя. Когда отверстия открываются (обычно это происходит с помощью специальных пиропатронов), давление внутри двигателя падает и соответственно уменьшается интенсивность горения. Кроме того, возникает обратная тяга, противоположная нормальной тяге основного сопла, и ускорение ракеты прекращается. Поскольку тяга РДТТ определяется геометрией и химическим составом заряда, изменение параметров двигателя для получения другой зависимости тяги от времени может потребовать проведения полного цикла испытаний нового двигателя.

ЖИДКОСТНЫЕ РАКЕТНЫЕ СТУПЕНИ

Наиболее эффективные ракеты работают на жидком топливе, потому что химическая энергия жидких компонентов больше, чем твердых, а продукты их сгорания имеют меньшую молекулярную массу.

Криогенные и самовоспламеняющиеся топлива.

К жидким топливам, имеющим большую теплотворную способность, относятся некоторые криогенные вещества – газы, которые превращаются в жидкость при очень низких температурах, например жидкий кислород (при температуре ниже - 183° С) и жидкий водород (ниже - 253° С). С другой стороны, применение криогенных компонентов имеет ряд недостатков, к которым относятся необходимость содержания больших промышленных установок для ожижения газов, большое время заправки ракеты (несколько часов) и необходимость теплоизоляции топливных баков. Поэтому первые американские межконтинентальные баллистические ракеты на криогенном топливе, «Атлас» и «Титан I», были уязвимы для внезапного нападения, при котором для ответного удара имелось всего несколько минут.

Жидкостные ракетные двигатели (ЖРД), использующие самовоспламеняющееся жидкое топливо, которое может храниться при нормальных температурах в течение длительного времени и воспламеняется при контакте компонентов друг с другом, были созданы в 1950-х годах, чтобы удовлетворить потребности военных по упрощению эксплуатации и уменьшению времени подготовки к пуску баллистических ракет. В таких двигателях в качестве окислителя применялся азотный тетроксид (N 2 O 4), а в качестве горючего гидразин (N 2 H 4) или несимметричный диметилгидразин (NH 2 - N 2) – комбинация, которая дает удельный импульс около 340 с. Компоненты самовоспламеняющегося топлива чрезвычайно токсичны и довольно агрессивны, поэтому они требуют крайней осторожности в обращении и периодической замены элементов конструкции, которые их содержат или находятся в контакте с ними. И хотя жидкостные баллистические ракеты с самовоспламеняющимся топливом впоследствии были заменены твердотопливными, это топливо по-прежнему незаменимо в двигателях ориентации и коррекции.

Двухкомпонентные ЖРД.

В описанных выше ЖРД горючее и окислитель хранятся в отдельных баках и путем вытеснения или с помощью насосов подаются в камеру сгорания, где они воспламеняются и сгорают, создавая высокоскоростную газовую струю. В качестве окислителя часто используется жидкий кислород, что связано с простотой его получения из атмосферного воздуха. Хотя по сравнению со многими другими химическими веществами жидкий кислород сравнительно безопасен, для его хранения должны использоваться только очень чистые емкости, потому что кислород вступает в химическую реакцию даже с жировыми пятнами, оставляемыми отпечатками пальцев, что может привести к возгоранию.

В качестве горючего в паре с кислородом чаще всего используются тяжелые углеводороды или жидкий водород. Теплота сгорания углеводородного горючего на единицу объема, например, очищенного керосина или спирта, выше, чем водорода. Углеводородное топливо горит ярким оранжевым пламенем. Основными продуктами сгорания смеси кислород/углеводород являются углекислый газ и пары воды. Удельный импульс такого топлива может достигать 350 с.

Жидкий водород требует более глубокого охлаждения, чем жидкий кислород, однако его теплота сгорания на единицу массы выше, чем у углеводородных горючих. Водород горит почти невидимым голубым пламенем. Основным продуктом сгорания кислородо-водородной смеси является перегретый водяной пар. Удельный импульс двигателей на этом топливе может достигать от 450 до 480 с в зависимости от конструкции двигателя. (Двигатели, использующие жидкий водород, обычно работают в режиме избытка горючего, что позволяет уменьшить массовый расход топлива и повысить экономичность.)

За прошедшие годы были испытаны многие другие комбинации горючего и окислителя, однако от большинства из них пришлось отказаться из-за их токсичности. Например, фтор является более эффективным окислителем, чем кислород, однако он чрезвычайно токсичен и агрессивен как в исходном состоянии, так и в продуктах сгорания. Различные смеси азотной кислоты с окислами азота раньше использовались в качестве окислителя, однако их достоинства перевешивались опасностью хранения и эксплуатации таких двигателей и ракет.

Не всегда легко сделать выбор между углеводородным горючим и жидким водородом. Обычно для первых ступеней ракет используют жидкое углеводородное (или смесевое твердое) топливо для прохождения плотных слоев атмосферы на первых минутах полета. Конечно, жидкий водород – очень эффективное горючее, однако из-за его малой плотности для первой ступени потребовались бы большие топливные баки, что привело бы к увеличению веса конструкции и лобового сопротивления ракеты. На больших высотах и в космосе чаще применяются водородные двигатели, где их преимущества проявляются в полной мере.

Трехкомпонентные ЖРД.

С начала 1970-х годов в России и США изучалась концепция трехкомпонентных двигателей, которые сочетали бы в себе достоинства минимального объема и минимальной массы в одном двигателе. При запуске такой двигатель работал бы на кислороде и керосине, а на больших высотах переключался на использование жидких кислорода и водорода. Такой подход, возможно, позволил бы создать одноступенчатую ракету, однако конструкция двигателя при этом значительно усложняется.

Однокомпонентные ЖРД.

В таких двигателях используется однокомпонентное жидкое топливо, которое при взаимодействии с катализатором разлагается с образованием горячего газа. Хотя однокомпонентные ЖРД развивают небольшой удельный импульс (в диапазоне от 150 до 255 с) и намного уступают по эффективности двухкомпонентным, их преимуществом является простота конструкции. Топливо, например гидразин или перекись водорода, хранится в единственной емкости. Под действием вытесняющего давления жидкость через клапан поступает в камеру сгорания, в которой катализатор, например, оксид железа, вызывает ее разложение (гидразина на аммиак и водород, а перекиси водорода – на водяной пар и кислород). Однокомпонентные ЖРД обычно используются как двигатели малой тяги (иногда их тяга составляет всего лишь несколько ньютонов) в системах ориентации и стабилизации космических аппаратов и тактических ракет, для которых простота и надежность конструкции и малая масса являются определяющими критериями. Можно привести замечательный пример использования гидразинового двигателя малой тяги на борту первого американского спутника связи TDRS-1; этот двигатель работал в течение нескольких недель, чтобы вывести спутник на геостационарную орбиту, после того как на ускорителе случилась авария и спутник оказался на значительно более низкой орбите.

Наиболее простой однокомпонентный двигатель работает от баллона сжатого холодного газа (например, азота), выпускаемого через клапан. Такие струйные двигатели применяются там, где недопустимо тепловое и химическое воздействие выхлопной струи газа или продуктов сгорания и где основным требованием является простота конструкции. Этим требованиям удовлетворяют, например, индивидуальные устройства маневрирования космонавтов (УМК), расположенные в ранце за спиной и предназначенные для перемещения при работах вне космического корабля. УМК работают от двух баллонов со сжатым азотом, который подается через соленоидные клапаны в двигательную установку, состоящую из 16 двигателей.

Двигательная установка.

За большую мощность, регулируемость и высокий удельный импульс жидкостных ракетных двигателей приходится расплачиваться сложностью конструкции. Специальные системы должны обеспечивать подачу горючего и окислителя в строго определенных количествах из топливных баков в камеру сгорания. Подача компонентов топлива осуществляется с помощью насосов или путем вытеснения их давлением газа. В вытеснительных системах, обычно используемых в небольших двигательных установках, топливо подается за счет наддува баков; при этом давление в баке должно быть больше, чем в камере сгорания.

В насосной системе для подачи топлива используются механические насосы, хотя некоторый наддув баков также применяется (для предотвращения кавитации насосов). Наиболее часто применяются турбонасосные агрегаты (ТНА), причем турбина питается газом собственной двигательной установки. Иногда для питания турбины используется газ, получаемый в результате испарения жидкого кислорода при прохождении его через контур охлаждения двигателя. В других случаях используется специальный газогенератор, в котором сжигается небольшое количество основного топлива или специального однокомпонентного топлива.

Маршевый двигатель «Шаттла» с насосной системой подачи топлива относится к наиболее совершенным двигателям, которые когда-либо поднимались в космос. Каждый двигатель имеет по два ТНА – бустерный (низконапорный) и основной (высоконапорный). Горючее и окислитель имеют одинаковые системы подачи. Бустерный ТНА, приводимый в действие расширяющимся газом, повышает давление рабочего тела перед входом его в основной ТНА, в котором давление повышается еще больше. Большая часть жидкого кислорода проходит через охлаждающий тракт камеры сгорания и сопла (а в некоторых конструкциях – и ТНА) прежде, чем он подается в камеру сгорания. Часть жидкого кислорода подается на газогенераторы основных ТНА, где он реагирует с водородом; при этом образуется богатый водородом пар, который, расширяясь в турбине, приводит в действие насосы, а затем подается в камеру сгорания, где сгорает с оставшейся частью кислорода. Хотя небольшие количества кислорода и водорода расходуются на привод бустерных ТНА и наддув баков кислорода и водорода, в конце концов они также проходят через основную камеру сгорания и вносят вклад в создание тяги. Этот процесс обеспечивает суммарный КПД двигателя до 98%.

Производство.

Производство ЖРД более сложно и требует большей точности, чем производство твердотопливных двигателей, поскольку они содержат вращающиеся с большой скоростью детали (до 38 000 об/мин в основных ТНА маршевого двигателя «Шаттла»). Малейшая неточность в изготовлении вращающихся деталей может привести к возникновению вибраций и разрушению.

Даже когда лопатки, колеса и валы турбин и насосов двигателя должным образом сбалансированы, могут возникнуть другие проблемы. Опыт эксплуатации кислородо-водородного двигателя J-2, использовавшегося на второй и третьей ступенях ракеты «Сатурн-5», показал, что в таких двигателях часто возникает проблема высокочастотной неустойчивости. Даже если двигатель правильно сбалансирован, взаимодействие ТНА с процессом горения может вызвать вибрацию с частотой, близкой к частоте вращения водородного насоса. Вибрации двигателя происходят в определенных направлениях, а не случайным образом. При такой неустойчивости уровень вибраций может стать настолько большим, что это потребует отключения двигателя, чтобы избежать его поломки. Камеры сгорания обычно представляют собой сварную или штампованную тонкостенную металлическую конструкцию с охлаждающим трактом и смесительной головкой для подачи топлива.

Испытания.

Необходимым этапом разработки ЖРД и его агрегатов являются испытания их на гидравлических и огневых стендах. В процессе огневых испытаний двигатель работает при давлениях и скоростях вращения ТНА, которые превышают нормальные рабочие значения, чтобы можно было оценить допустимые предельные нагрузки на отдельные агрегаты и конструкцию в целом. Летные образцы двигателей должны пройти приемо-сдаточные испытания, которые включают кратковременные и контрольно-выборочные огневые испытания, имитирующие основные этапы полета. Суммарное время испытаний и работы двигателя в полете не должно превышать его общий ресурс.

Выключение, повторный запуск и регулирование тяги.

Основным преимуществом ЖРД является возможность выключения, повторного запуска и регулирования тяги. Маршевый двигатель «Шаттла», например, может устойчиво работать в диапазоне от 65 до 104% номинальной тяги. Экипаж лунного модуля космического корабля «Аполлон», маневрируя при посадке, мог регулировать тягу двигателей до 10% от номинала. Напротив, тяга двигателей, обеспечивающих старт модуля с Луны, не регулировалась, что позволило повысить их эффективность и надежность.

Возможность повторного запуска ЖРД в космосе представляет проблему, поскольку топливо, как и любые предметы в невесомости, хаотически располагается внутри баков и не будет поступать в систему питания двигателя при отсутствии ускорения. Самый простой способ решения проблемы состоит в использовании специальных двигателей малой тяги, которые создают небольшое ускорение, достаточное для того, чтобы топливо стало поступать в трубопроводы. Запуск этих двигателей обеспечивается либо за счет небольших эластичных мешков с топливом, прикрепленных к трубопроводам, либо с помощью специальных сеток, на которых за счет сил поверхностного натяжения удерживается достаточно топлива для запуска двигателя. Эластичные топливные емкости и устройства сбора жидкости используются и для непосредственного запуска космических ЖРД.

СИСТЕМЫ УПРАВЛЕНИЯ И НАВЕДЕНИЯ

Важной составной частью ракеты являются системы управления и наведения. Система наведения определяет положение и курс ракеты и выдает системе управления необходимые данные для управления ее полетом. Управление полетом ракеты осуществляется небольшими рулевыми двигателями или путем изменения направления вектора тяги основного двигателя.

В больших РДТТ соединение корпуса и сопла может быть выполнено из множества тонких слоев стали и жаростойкой резины, что позволяет соплу поворачиваться на несколько градусов в любом направлении. С помощью одного или двух гидроприводов сопло отклоняется, изменяя направление вектора тяги. Приводы используют энергию небольшого турбонасосного агрегата, работающего на продуктах разложения гидразина. В некоторых РДТТ горячий газ (от небольшого вспомогательного двигателя) подается через несколько клапанов, расположенных по окружности в расширяющейся части сопла. При закрытии одного или нескольких клапанов происходит изменение направления основной струи и, соответственно, вектора тяги. ЖРД устанавливают в поворотных цапфах или в кардановом подвесе, что позволяет поворачивать двигатель целиком.

ИСТОРИЧЕСКАЯ СПРАВКА

Древность и Средние века.

Хотя свое развитие ракетная техника получила в связи с современными военными потребностями и космическими исследованиями, история ракет уходит своими корнями в Древнюю Грецию. В паровой машине, названной его именем, Герон продемонстрировал принцип реактивного движения. Небольшой металлический сосуд, имеющий форму птицы и наполненный водой, подвешивался над огнем. Когда вода закипала, струя пара выбрасывалась из хвоста птицы, толкая сосуд вперед. Это устройство не нашло практического применения, и сам принцип был впоследствии забыт.

В Китае приблизительно в 960 н.э. впервые был применен черный порох – смесь селитры (окислитель) и древесного угля с серой (горючее) – для метания снарядов, и в 11 в. была достигнута дальность метания таких снарядов около 300 м. Эти «ракеты» представляли собой бамбуковые трубки, наполненные порохом, и не отличались особой точностью полета. Их главным назначением в бою было наводить панику на людей и лошадей. В 13 в. вместе с монгольскими завоевателями ракеты попали в Европу, и в 1248 английский философ и естествоиспытатель Роджер Бэкон опубликовал труд по их применению. Период использования таких неуправляемых ракет в военных целях был непродолжительным, так как довольно скоро они были вытеснены артиллерийскими орудиями.

Циолковский, Оберт и Годдард.

Современная ракетная техника обязана своим развитием главным образом трудам и исследованиям трех выдающихся ученых: Константина Циолковского (1857–1935) из России, Германа Оберта (1894–1989) из Румынии и Роберта Годдарда (1882–1945) из США. Хотя эти подвижники работали независимо друг от друга и их идеи в то время часто игнорировались, они заложили теоретические и практические основы ракетной техники и космонавтики. Их труды вдохновили поколения мечтателей и, что самое важное, нескольких энтузиастов, которые дали жизнь их трудам. См. также ГОДДАРД, РОБЕРТ ХАТЧИНГС ; ОБЕРТ, ГЕРМАН ; ЦИОЛКОВСКИЙ, КОНСТАНТИН ЭДУАРДОВИЧ .

Циолковский, школьный учитель, впервые написал о жидкостных ракетах и искусственных спутниках в 1883 и 1885. В своей работе Исследования мировых пространств реактивными приборами (1903) он изложил принципы межпланетных полетов. Циолковский утверждал, что наиболее эффективным топливом для ракет было бы сочетание жидких кислорода и водорода (хотя даже лабораторные количества этих веществ в то время были весьма дорогостоящими), и предложил использовать связку небольших двигателей вместо одного большого. Он также предложил использовать многоступенчатые ракеты вместо одной большой для облегчения межпланетных перелетов. Циолковский разработал основные идеи систем жизнеобеспечения экипажа и некоторые другие аспекты космических путешествий.

В своих книгах Ракета в межпланетное пространство (Die Rakete zu den Planetenraumen ,1923) и Пути осуществления космических полетов (Wege zur Raumschiffahrt , 1929) Г.Оберт изложил принципы межпланетного полета и выполнил предварительные расчеты массы и энергии, необходимые для полетов к планетам. Его сильной стороной была математическая теория, но в практической деятельности он не продвинулся дальше стендовых испытаний ракетных двигателей.

Разрыв между теорией и практикой заполнил Р.Годдард. Еще юношей он был захвачен идеей межпланетного полета. Его первое исследование относилось к области твердотопливных ракет, в которой он получил свой первый патент в 1914. К концу Первой мировой войны Годдард далеко продвинулся в создании ракет со ствольным запуском, которые не были использованы армией США в связи с наступлением мира; во время Второй мировой войны, однако, его разработки привели к созданию легендарной базуки, первой эффективной противотанковой ракеты. Смитсоновский институт в 1917 предоставил Годдарду исследовательский грант, результатом которого стала его классическая монография Метод достижения экстремальных высот (A Method of Reaching Extreme Altitudes ,1919). Годдард начал работу над ЖРД в 1923, а работающий прототип был создан к концу 1925. 16 марта 1926 он осуществил запуск первой жидкостной ракеты, в которой в качестве топлива использовались бензин и жидкий кислород, в Оберне (шт. Массачусетс). Во время Второй мировой войны Годдард работал над стартовыми ускорителями для морской авиации.

Работы Циолковского, Оберта и Годдарда были продолжены группами энтузиастов ракетной техники в США, СССР, Германии и Великобритании. В СССР исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). Члены Британского межпланетного общества BIS, ограниченные в своих испытаниях британским законом о фейерверках, идущим от Порохового заговора (1605) с целью взорвать парламент, сосредоточили усилия на разработке «пилотируемого лунного космического корабля», основываясь на доступных для того времени технологиях.

Немецкое Общество межпланетных сообщений VfR в 1930 смогло создать примитивную установку в Берлине, и 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты.

Нацистская Германия.

Немецкая армия рассматривала ракеты как оружие, которое она может использовать, не опасаясь международных санкций, поскольку в Версальском договоре (который подвел итоги Первой мировой войны) и последующих военных договорах о ракетах не упоминалось. После прихода Гитлера к власти военному ведомству Германии были выделены дополнительные средства на разработку ракетного оружия, и весной 1936 была одобрена программа строительства ракетного центра в Пенемюнде (фон Браун был назначен его техническим директором) на северной оконечности острова Узедом у балтийского побережья Германии.

Следующая ракета – А-3 имела двигатель тягой 15 кН с системой наддува на жидком азоте и парогенератором, гироскопическую систему управления и наведения, систему контроля параметров полета, электромагнитные сервоклапаны для подачи компонтов топлива и газовые рули. Хотя все четыре ракеты А-3 взорвались на старте или вскоре после старта с полигона в Пенемюнде в декабре 1937, технический опыт, полученный при проведении этих запусков, был использован при разработке двигателя тягой 250 кН для ракеты А-4, первый успешный запуск которой состоялся 3 октября 1942.

После двух лет конструкторских испытаний, подготовки производства и обучения войск ракета А-4, переименованная Гитлером в Фау-2 («Оружие возмездия-2»), была развернута начиная с сентября 1944 против целей в Англии, Франции и Бельгии.

Послевоенный период.

Ракета А-4 показала огромные возможности ракетной техники, и наиболее мощные послевоенные державы – Соединенные Штаты и Советский Союз – вскоре оказались втянутыми в разработку баллистических управляемых ракет, способных доставлять ядерное оружие. Достижения ракетной техники позволили также создать тактические ракеты, которые радикально изменили характер ведения войны.

В то время как военные ведомства обеих стран совершенствовали боевые ракеты, многие ученые (С.П.Королев в СССР, В. фон Браун в США) стремились использовать возможности ракетной техники для доставки научных приборов и в конце концов человека в космос. Со времени запуска первого спутника в 1957 и первого космонавта Ю.Гагарина в 1961 ракетно-космическая техника прошла большой путь.

ПЕРСПЕКТИВНЫЕ РАКЕТНЫЕ СИСТЕМЫ

До конца 20 в. сгорание топлива оставалось основным источником энергии для реактивного движения. Хотя с 1920-х годов было предложено немало перспективных технических концепций, большинство из них не получило практического воплощения.

Гибридные двигатели.

Заманчивой альтернативой РДТТ и ЖРД является идея гибридного двигателя, в которой объединены лучшие качества обоих. В гибридном двигателе используются твердое горючее и жидкий окислитель, например жидкий кислород или азотный тетроксид. Такой подход позволяет наполовину упростить систему подачи топлива при сохранении присущей РДТТ компактности. Поскольку окислитель и горючее хранятся раздельно, трещины в твердотопливном заряде горючего менее опасны, чем в традиционном РДТТ, что упрощает его изготовление. Однако, несмотря на значительные исследовательские усилия, особенно в 1980-х годах, эта идея так и не нашла широкого применения. Основная проблема состояла в недостаточно устойчивом и эффективном процессе горения.

Электроракетный двигатель.

Электричество можно использовать для нагрева рабочего тела. Примером такого двигателя может служить ионный двигатель, в котором используются высоковольтная дуга для ионизации рабочего тела, например аргона или паров ртути, и электрическое поле для ускорения потока ионов. Принципиальным преимуществом такого двигателя является очень высокий удельный импульс (до 5000 с, в зависимости от конструкции двигателя и используемого рабочего тела). Тяга ионных двигателей очень мала и обычно находится в диапазоне от 0,02 до 0,03 Н. Ионные двигатели предназначаются для длительных космических полетов, когда за месяцы работы в условиях невесомости получается значительный суммарный прирост скорости. Ионные двигатели нашли также применение на геостационарных спутниках, где они обеспечивают постоянный небольшой импульс, достаточный для управления положением и сохранения орбиты. В других схемах ЭРД используются высокоэнергетическая плазма и магнитогидродинамический эффект.

Ядерные ракетные двигатели.

Другой реактивной системой, которая едва не получила практическое воплощение, является ядерная. В США в рамках программы по созданию ядерного ракетного двигателя (ЯРД) NERVA был разработан графитовый реактор, охлаждаемый жидким водородом, который испарялся, нагревался и выбрасывался через ракетное сопло. Графит был выбран из-за его высокой температурной стойкости. По проекту NERVA ЯРД должен был развивать тягу 1100 кН в течение одного часа и иметь удельный импульс 800 с, что почти вдвое превышает соответствующий показатель для химических двигателей. Программа NERVA была отменена в 1972 из-за того, что на неопределенный срок был отодвинут пилотируемый полет на Марс, для которого она разрабатывалась.

Разновидность ЯРД, использующего реакцию деления, представляет газофазный ядерный двигатель, в котором медленно движущаяся газовая струя делящегося плутония окружена более быстрым потоком охлаждающего водорода. Эта идея не вышла, однако, из стадии предварительных исследований.

Интересная идея создания двигателя, использующего реакцию аннигиляции материи и антиматерии, изучалась в рамках программы стратегической оборонной инициативы (СОИ) США. Антивещество в виде атомов хранится в электромагнитной ловушке и посредством магнитного поля подается в камеру двигателя, где оно взаимодействует с обычным веществом, превращаясь в гамма-излучение, которое нагревает рабочую жидкость и создает реактивную струю. Хотя магнитные ловушки используются в физике высоких энергий, для получения нескольких граммов антивещества, необходимых для полета, требуется огромное количество энергии.

Внешние источники энергии.

В рамках программ СОИ и Национального управления по аэронавтике и исследованию космического пространства (НАСА) также изучалась реактивная система с мощным лазером, который нагревает рабочее тело, находящееся на борту ракеты. Сама ракета имеет небольшую массу, так как основная масса системы приходится на лазер, который может располагаться на Земле. Такая система требует исключительно точного наведения лазерного луча на цель, чтобы не сжечь ракету вместо нагрева рабочего тела. Рассматривалась также идея использования больших зеркал для фокусирования солнечных лучей на двигатель.

Использование энергии атомного взрыва.

В 1960-х годах НАСА и Комиссия по атомной энергии США исследовали один довольно экзотический метод получения тяги в рамках проекта «Орион». В этом методе разгон ракеты до большой скорости, необходимой для полета к другим планетам, предполагалось осуществлять путем последовательных взрывов небольших атомных зарядов, выбрасываемых за ракетой. Специальные гасители должны были сглаживать воздействие взрывов. Однако проект «Орион» был отменен в соответствии с международными договорами по использованию космического пространства и ограничению ядерных вооружений.

Фотонные двигатели.

Изучалась также возможность использования света для получения тяги в космосе. Частицы света – фотоны – создают очень малый реактивный импульс при воздействии на поверхность. Простейший двигатель такого рода представляет собой огромное пластиковое зеркало, которое отражает солнечные лучи и толкает космический аппарат в сторону от Солнца (солнечный ветер создает добавочный импульс). В настоящем фотонном двигателе вследствие аннигиляции обычного вещества и антивещества должен создаваться поток гамма-излучения, обеспечивающий реактивную тягу для движения космического аппарата.

РАКЕТНЫЕ ДВИГАТЕЛИ/СИСТЕМЫ РЕАКТИВНОГО ДВИЖЕНИЯ
Двигатели/Реактивные системы Применение Топливо Тяга Удельный импульс, с
ДВУХКОМПОНЕНТНЫЕ ЖРД 200–480
РД-107 (Россия) Ускоритель для А-серии носителей («Союз») Керосин и O 2 822 кН (на уровне моря) 1002 кН (в вакууме) 257–314
LR-91-AJ-11(США) 2-я ступень ракеты «Титан 4» Азотный тетроксид и Аэрозин 50 (50% гидразина и 50% НДМГ) 467 кН (на высоте) 316
Маршевая ДУ «Шаттла» (3) (США) Разгонный блок орбитального корабля H 2 и O 2 1670 кН (на уровне моря) 2093 кН (в вакууме) 453
РД-701 (Россия) Трехкомпонентный ЖРД для перспективных космических носителей Первая ступень – керосин и O 2 ; верхние ступени – H 2 и O 2 1962 кН (на уровне моря) 786 кН (в вакууме) 330–415
ОДНОКОМПОНЕНТНЫЕ ЖРД 180–240
Однокомпонентный ракетный двигатель MRE-1 (США) Система ориентации спутника Разложение гидразина при взаимодействии с катализатором 4,5 Н 210–220
РДТТ 200–300
«Кастор» 4А (США) Ускоритель для ракет «Дельта 2» и «Атлас 2» Бутадиеновое, 18% Al 477 кН (на уровне моря) 238
ИОННЫЕ 3000–25000
UK-10 (Великобритания) Двигатель коррекции орбиты геостационарных спутников связи Ксеноновая плазма 0,02–0,03 Н (в вакууме) 3084–3131
ЯДЕРНЫЕ 500–1100
NERVA (США) Двигатель для пилотируемых космических полетов к другим планетам (разработка прекращена в 1972) H 2 , источник испарения и нагрева – графитовый реактор 815
СОЛНЕЧНЫЕ 400–700
ISUS (США) Последняя разгонная ступень для выведения спутников на геостационарную орбиту H 2 , испарение и нагрев солнечным излучением, сфокусированным на двигатель двумя рефлекторами 45 Н 600
ЭЛЕКТРОТЕРМИЧЕСКИЕ H 2 , испарение и нагрев электрической дугой 400–2000
ПЛАЗМЕННЫЕ H 2 , испарение, ионизация и ускорение магнитным полем 3000–15000
АННИГИЛЯЦИОННЫЕ H 2 , испарение и нагрев за счет энергии электронов и позитронов 2000–50000

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении