Бизнес идеи с нуля

Как вернуть меди твердость после отжига. Термическая обработка металлов. Отжиг и закаливание дюралюминия

Закалка металла позволяет произвести некоторые изменения в его структуре, сделав ее более мягкой или наоборот твердой. При закалке очень многое зависит не только от самого нагрева, но и от процесса и времени охлаждения. В основном производители производят закалку стали, делая изделие более прочным, однако, может быть произведена и закалка меди, если возникает такая необходимость.

Закалка меди – производственный процесс

Закалка меди производится при помощи использовании метода отжига. Во время термообработки медь можно сделать более мягкой или более твердой в зависимости от того, для чего она будет применяться в дальнейшем. Однако важно помнить, что способ закалки меди значительно отличается от того, при помощи которого закаливается сталь.

Закалка меди происходит при медленном остывании в воздушной среде. Если необходимо получить более мягкую структуру, тогда закалка производится при быстром охлаждении металла в воде сразу же после нагрева. Если нужно получить очень мягкий металл, то следует нагреть медь до красна (это примерно 600°), а затем опустить в воду. После того, как изделие пройдет процесс деформации и приобретет необходимую форму, его можно будет снова нагреть до 400°, а затем позволить остыть в воздушной среде.

Установка для закалки меди

Закалка меди производится в специальном оборудовании, предназначенном для этого. Существует несколько видов установок для закалки, но наиболее популярным на сегодняшний день стало индукционное оборудование. Индукционная установка отлично подходит для закалки меди, позволяя получить изделие высокого качества. Благодаря автоматизированному программному обеспечению ТВЧ оборудования, оно настраивается с высокой точностью, где указывается время нагрева, температура, а также способ охлаждения металла.

Если предприятие постоянно производит закалку металлических изделий, то лучше всего будет обратить внимание на специальный комплекс оборудования, созданный для комфортной быстрой закалки. Закалочный комплекс ЭЛСИТ обладает всем необходимым оборудованием для закалки ТВЧ . В комплект закалочного комплекса входит: индукционная установка, закалочный станок , манипулятор и модуль охлаждения. Если заказчику необходимо производить закалку изделий, имеющих разную форму, то в комплектацию закалочного комплекса может быть включен набор индукторов различных размеров.

ЛАТУНИ

Латуни являются самыми распространенными сплавами на основе меди. Сводный перечень стандартных латуней по ГОСТ 15527 и их зарубежных аналогов приведен в табл. 1.


Диаграмма состояния сплава системы медь-цинк приведена на рис. 1


И зменения температуры испарения, плавления и литья медно-цинковых сплавов в зависимости от содержания цинка - на рис. 2.

Изменение модуля нормальной упругости медно­цинковых сплавов в зависимости от содержания цинка - рис. 3.


Основные параметры интерметаллических фаз сплавов системы Cu - Zn приведены в табл. 2.

При переходе из неупорядоченной β-фазы в упо­рядоченную β’-фазу в указанном интервале темпе­ратур происходит уменьшение коэффициента взаимной диффузии и скорости роста фазы. Энергия активации взаимной диффузии β’-фазе возрастает, а в β-фазе уменьшается с ростом концентрации цин­ка, при этом она примерно в 1,5 раза больше в β’-фазе, чем в β-фазе. Парциальные коэффициенты диффузии ато­мов Zn в 2 раза больше, чем атомов Cu в разупорядоченной β-фазе, и почти совпадают с упорядоченной β’-фазой.

Практическое применение имеют простые латуни, имеющие фазовый состав α, α + β, β и β + γ .

Химический состав латуней, обрабатываемых давлением, по отечественным приведен в прил. 1.



ПРОСТЫЕ ЛАТУНИ

Простые латуни в зависимости от фазового состава делятся на два типа: однофазные α (до 33 % Zn ) и двухфазные α + β (свыше 33% Zn ).

В однофазных латунях, содержание цинка в которых близко к пределу насыщения, иногда присутствуют небольшие количе­ства β-фазы в результате медленно протекающих диффузион­ных процессов. Однако включения /3-фазы, наблюдаемые в очень малых количествах, не оказывают заметного влияния на свойства α -латуней. Таким образом, хотя у этих латуней струк­тура и является двухфазной, но по своим физико-механическим и технологическим свойствам их целесообразно отнести к одно­фазным латуням.

Обработка давлением простых латуней

Однофазные (а) ла­туни при горячем деформировании очень чувствительны к со­держанию примесей, особенно легкоплавких (Bi , Pb ). Висмут в сплаве может сегрегировать по границам, поэтому даже одно­атомный слой его может вызвать красноломкость в однофазных латунях с высоким содержанием цинка. Обрабатываемость α - латуней в горячем состоянии с повышением содержания цинка ухудшается. В холодном состоянии однофазные латуни обра­батываются хорошо.

Двухфазные α + β -латуни обрабатываются в горячем состо­янии лучше однофазных благодаря наличию высокопластич­ной при повышенных температурах β -фазы и менее чувствительны к примесям. Однако они чувствительны к тем­пературно-скоростным режимам охлаждения. По этой причи­не в горячепрессованных полуфабрикатах часто наблюдается неоднородная структура. Например, передний конец прутка (полосы или трубы) имеет преимущественно мелкую игольчатую структуру и высокие механические свойства, у за­днего конца прутка в результате захолаживания струк­тура зернистая и пониженные механические свойства.

В холодном состоянии двухфазные латуни обрабаты­ваются хуже однофазных. Пластичность их в холодном состоянии зависит от структуры. Если α -фаза располо­жена на основном фоне кристаллов β -фазы в виде тон­ких игл, то обрабатываемость двухфазных латуней в холодном состоянии улучшается.

Влияние содержания цинка в латунях на температур­ный интервал горячей обработки давлением приведено на рис. 4.


У латуней в температурном интервале 200- 600°С в зависимости от фазового состава и содержания цинка наблюдается зона пониженной пластичности.

При холодной прокатке, волочении и глубокой штамповке латуней независимо от их фазового состава предпочтительна структура с величиной зерна не более 0,05 мм.

Суммарная степень холодной деформации простых латуней обусловлена определенным пределом, выше которого пластичность резко падает. Этот предел допустимой суммарной холодной деформации, который уменьшается с повышением содержания цинка, устанавливают для каждой марки латуни.

Если принять наивысшую пластичность в горячем состоянии в гомогенной области β -фазы, а при комнатной температуре в области α -фазы за 100%, то обрабатываемость латуней давле­нием можно оценить количественно (табл . 3).


Такие оценки обрабатываемости металлов и сплавов давлением и других технологических характеристик часто применяются в зарубежной практике.

Термообработка простых латуней . Основным видом термической обработки простых латуней являются рекристаллизационный отжиг и отжиг для снятия внутренних напряжений. Процесс рекристаллизации латуней определяется содержанием цинка и фазовым составом.

Температура начала рекристаллизации α -латуней с увеличением содержания цинка снижа­ется. Рекристаллизация α -фазы в сильнодеформированной двухфазной латуни начинается при 300°С. В этих условиях β-фаза остается неизменной и ее рекристаллизация начинается при более высокой температуре. Поэтому при выборе температуры отжига для получения опти­мальной структуры необходимо учитывать эту особенность двухфазных латуней.

Размеры зерна однофазных латуней определяют по эталонам микроструктур (ГОСТ 5362).

При отжиге латунных полуфабрикатов в воздушной или окислительной атмосфере на поверхности их образуются пятна - продукты окисления, трудноудаляемые при травлении. Уменьшение парциального давления кислорода (отжиг в вакууме) предотвращает образование пятен, но вызывает опасность обесцинкования. Поэтому рекомендуется проводить отжиг при минимальной температуре и в защитной атмосфере. В условиях производства труднее всего избежать пятен в латунях, содержащих 37-40% цинка.

Обрабатываемость простых латуней резанием. Обрабатываемость латуней резанием (точе­ние, фрезерование, строгание, шлифование) зависит от фазового состава латуней. При обра­ботке резанием однофазных латуней стружка получается длинной. Двухфазные ( а + β ) латуни обрабатываются лучше однофазных α -латуней. С увеличением содержания /3-фазы стружка становится более хрупкой и короткой. Количественная оценка обрабатываемости резанием простых латуней определяется сравнением с латунью ЛС63-3, обрабатываемость которой принята за 100%. Однофазные α -латуни отлично полируются, двухфазные - несколько хуже. Обрабатываемость латуней резанием и полируемость приведены в табл . 4.


Пайка и сварка простых л атуней. Простые латуни очень легко соединяются мягкими при­поями. Перед пайкой мягким припоем зачистку поверхности производят либо шлифовкой, либо травлением в кислоте. В качестве припоя предпочтительно применять сплавы, содержа­щие 60% олова. Содержание сурьмы в припое из-за ее сильного сродства к цинку должно быть не более 0,25-0,5%. Пайку мягким припоем предпочтительно выполнять с хлоридными флю­сами.

Однофазные α -латуни также легко соединяются пайкой твердыми припоями, в том числе серебряными, двухфазные а + β - несколько хуже.

Медно-фосфористые припои являются самофлюсующимися, поэтому пайку латуней этими припоями производят без флюсов. При пайке другими твердыми припоями необходимо при­менять соответствующие флюсы.

Содержание свинца в твердых припоях ограничивается 0,5%.

Количественная оценка способности простых латуней к пайке, %: однофазные α -латуни (мягкие припои) – 100%, однофазные α -латуни (тведые припои) – 100%, двухфазные α+ β -латуни (мягкие припои) – 100%, двухфазные α+ β -латуни (твердые припои) – 75%.

Свариваемость простых латуней несколько хуже, чем паяемость. Общая количественная оценка свариваемости латуней -75% по сравнению с бескислородной медью, принятой за 100%. Для соединения латуней применяют следующие виды сварки: дуговая с угольным элек­тродом, дуговая с расходуемым электродом, дуговая с вольфрамовым (нерасходуемым) элект­родом в среде защитного (инертнего газа), дуговая с расходуемым электродом в среде инертного газа, кислородно-ацетиленовая, электрическая контактная (точечная, роликовая, стыковая).

Латунь с содержанием 20% Zn плохо поддается электрической контактной сварке, легче - латунь с 40% Zn . Высокое содержание цинка в двухфазных латунях затрудняет дуговую сварку из-за его испарения. Поэтому присадочные материалы, применяемые при дуговой сварке, должны содержать относительно небольшое количество цинка. Латуни, содержащие более 0,5% РЬ, обычно плохо поддаются сварке. Для улучшения смачиваемости металла в процессе сварки необходим предварительный нагрев до температуры 260°С, особенно для латуней с высоким содержанием меди. Сварка угольным электродом латуней, содержащих 15-30%, Zn , лучше всего ведется с помощью присадочных прутков (проволоки) из сплава Си + 3% Si . Для однопроходных швов можно применять прутки (проволоку) медные, легирован­ные небольшим количеством олова; для многопроходных швов лучше применять прутки из сплава Cu + 3 % Si .

Латуни, содержащие более 30% Zn , можно сваривать угольным электродом с присадоч­ными прутками (проволокой) из латуни Cu + 40% Zn или Cu + 3% Si . Для улучшения качества сварки необходимо металл предварительно нагревать до температуры 210°С. В качестве расходуемых электродов применяют проволоку или прутки из оловянно-фосфористой бронзы или из алюминиевой бронзы.

Дуговая сварка латуней вольфрамовым электродом в среде инертного газа осложняется выделением паров оксида цинка, которые подавляют действие дуги. Поэтому сварку следует вести при больших скоростях.

Хорошие результаты дает кислородно-ацетиленовая сварка. Для сварки латуней с содержа­нием 15-30% Zn необходимо пользоваться присадочными прутками (проволокой) из сплава Cu + 1,5% Si . Если условия эксплуатации готовых изделий не вызывают локальной коррозии (обесцинкования), можно использовать латунь с 40% Zn (Л60). Для сварки латуней, содержа­щих более 30% Zn в качестве присадочного материала применяют сплав Cu + 3% Si .

Влияние примесей на свойства простых латуней. Примеси не оказывают существенного влияния на механические, физические (за исключением железа, которое при содержании > 3,0% изменяет магнитные свойства латуней) и химические свойства простых латуней, но заметно влияют на их технологические характеристики. При горячей обработке давлением однофазные латуни особенно чувствительны к легкоплавким примесям.

Качество изделий, получаемых из латуней глубокой штамповкой, зависит от чистоты сплава, поэтому в простых латунях, предназначенных для глубокой штамповки, содержание примесей должно быть минимальным.

Влияние примесей на качество полуфабрикатов из латуней:

алюминий ухудшает качество литья, вызывая пенистость в отливках; висмут вызывает горячеломкость латуней, особенно однофазных; железо затрудняет процесс рекристаллизации;

кремний улучшает процессы пайки и сварки, повышает коррозионную стойкость; никель повышает температуру начала рекристаллизации;

свинец вызывает горячеломкость латуней, особенно однофазных, содержащих цинк в пределах 30-33 %;

сурьма отрицательно влияет на обрабатываемость латуней давлением. Микродобавки сурьмы (<0,1 %) к двухфазным латуням частично локализуют коррозию, связанную с обесцинкованием;

мышьяк ухудшает пластичность латуней в результате выделения хрупких фаз при концен­трации выше его предела растворимости: в латунях в твердом состоянии (>0,1%). Добавки мышьяка в малых количествах (< 0,04%) предохраняют латуни от коррозионного растрески­вания и обесцинкования при контакте с морской водой;

фосфор измельчает структуру в литом состоянии и предотвращает растрескивание при нагревании, ускоряет рост зерен при рекристаллизации; уменьшает коррозию, связанную с обесцинкованием; не рекомендуется как раскислитель медно-цинковых сплавов;

олово понижает пластичность латуней и может вызвать растрескивание при нагревании, если содержание железа > 0,05%.

Модифицирование латуней осуществляется введением в расплав:

добавок элементов, образующих тугоплавкие соединения, которые при структурном соответствии будут служить центрами кристаллизации;

поверхностно активных металлов, которые, концентрируясь на гранях зарождающихся кристаллов, замедляют их рост.

В качестве модификаторов в латунях применяют такие элементы, как железо, никель, марганец, олово, иттрий, кальций, бор, а также мишметалл.

Коррозионные свойства латуней. Латуни обладают удовлетворительной устойчивостью против воздействия промышленной, морской и сельской атмосфер. На воздухе они тускнеют. Корродирующее воздействие на латуни, содержащие >15% цинка, оказывают угле­кислый газ и галогены.

Латуни, содержащие <15% Zn , по своей коррозионной стойкости близки к меди промыш­ленной чистоты.

Под воздействием окисляющих кислот латуни интенсивно корродируют. Предельная кон­центрация азотной кислоты, при которой не наблюдается заметной коррозии, составляет 0,1 % (по массе). Серная кислота действует на латуни менее агрессивно, однако при наличии окис­ляющих солей К 2 СГ 2 О 7 и Fe 2 (S0 4) 3 скорость коррозии возрастает в 200-250 раз. Из неокис­ляющих кислот наиболее сильное корродирующее воздействие оказывает соляная кислота.

Коррозионная стойкость латуней по отношению к большинству кислот, не обладающих окислительной способностью, удовлетворительная. Латуни также стойки к воздействию раз­бавленных горячих и холодных щелочных растворов (за исключением растворов аммиака) и холодных концентрированных нейтральных растворов солей. Латуни инертны по отношению к речной и соленой воде. При контакте с речной водой, содержащей небольшое количество серной кислоты, и в морской воде простые латуни заметно корродируют. Скорость коррозии зависит от температуры, концентрации, степени загрязнения и скорости обтекания поверхно­сти металла. По отоношению к почве латуни обладают хорошей коррозионной стойкостью, к пищевым продуктам - нейтральны. Скорость коррозии латуни в почве составляет от 0,0005 мм/год (в суглинистой с pH 5,7) до 0,075 мм/год (в зольной с pH 7,6).

Сухие газы - фтор, бром, хлор, хлористый водород, фтористый водород, углекислый газ, оксиды углерода и азота при температуре 20°С и ниже на латуни практически не действуют, однако в присутствии влаги действие галогенов на латуни резко возрастает; сернистый ангидрид вызывает коррозию латуней при концентрации его в воздухе - 1 % и влажности воздуха > 70%; сероводород значительно действует на латуни при всех условиях, однако латуни с содержанием Zn > 30% более устойчивы, чем латуни с небольшим содержанием цинка.

Фторированные органические соединения, например, фреон, на латуни практически не действуют.

Во влажном насыщенном паре при больших скоростях (около 1000 м 3 / c ) наблюдается питтинговая коррозия, поэтому для перегретого пара латуни не применяют.

Коррозионная стойкость латуней в различных средах приведена в табл . 5.


В рудничных водах, особенно при наличии Fe 2 (SO 4 ) 3 латуни сильно корродируют. Присут­ствующие в воде фтористые соли действуют на латуни слабо, хлористые - сильнее, иодистые - очень сильно.

Латуни, кроме общей коррозии, подвержены также особым видам коррозии: ооесцинкованию и "сезонному" растрескиванию.

Обесцинкование - особая форма коррозии, при которой растворяется твердый раствор цинка в меди и в катодных местах электрохимически осаждается медь. Продукты коррозии цинка могут отводиться или задерживаться в виде оксидной пленки. Раствор, в котором латунь подвергается обесцинкованию, обычно содержит больше цинка, чем меди.

В результате обесцинкования латуни становятся пористыми, на поверхности появляются красноватые пятна, ухудшаются механические свойства. Обесцинкование наблюдается при контакте латуни с электропроводящими средами (кислые и щелочные растворы) и проявляется в двух формах: сплошной и локальной. Процесс обесцинкования усиливается с увеличением содержания цинка, а также с повышением температуры и аэрации. Однофазные латуни, содержащие >15% Zn , подвергаются обесцинкованию в кислых растворах (нитраты, сульфаты, хлориды, соли аммония и цианиды). В двухфазных латунях процесс обесцинкования заметно усиливается и может происходить даже в водных средах. Наиболее уязвимой является β -фаза.

Малые добавки мышьяка, фосфора и сурьмы частично локализуют коррозию, связанную с обесцинкованием. Мышьяк и сурьма защищают от обесцинкования главным образом α -фазу.

"Сезонное" или межкристаллитное растрескивание наблюдается в латунях в результате воздействия коррозионных агентов при наличии растягивающих напряжений. К коррозион­ным агентам относятся: пары или растворы аммиака, конденсаты с сернистыми газами, влаж­ный серный ангидрид, растворы солей ртути, различные амины, компоненты травильных растворов, влажный диоксид углерода. Если в атмосфере содержатся следы аммиака, влажного диоксида углерода, сернистого газа и др. коррозионных агентов, то "сезонное" растрескивание проявляется при колебаниях температуры, в результате кото­рых на поверхности деталей происходит конденсация коррози­онных агентов.

Латуни, содержащие до 7% цинка, мало чувствительны к "сезонному” растрескиванию. В латунях, содержащих от 10 до 20% цинка, межкристаллитное растрескивание не наблюдает­ся, если внутренние растягивающие напряжения не превышают 60 МПа. Латуни, содержащие 20-30% Zn , подвергаются корро­зионному растрескиванию только в холоднодеформированном состоянии в водном растворе аммиака. Наиболее склонны к коррозионному растрескиванию однофазные латуни с концен­трацией цинка, близкой к пределу насыщения, и двухфазные. Они устойчивы против "сезонного" растрескивания только при наличии растягивающих напряжений < 10 МПа.

Склонность к коррозионному растрескиванию медно-цинковых сплавов в парах аммиака приведена на рис. 5.

Для предотвращения коррозионного растрескивания латуней необходимо применять низкотемпературный отжиг и предо­хранять их от окисления при хранении. Для снятия внутренних напряжений производят дорекристаллизационный отжиг.

Для предохранения латуней от окисления рекомендуется пассивировать их в следующих средах: слабокислом водном рас­творе, содержащем около 6% ангидрида хромовой кислоты и 0,2% серной кислоты; водном растворе, содержащем 5 % хромпика и 2% хромовых квасцов.

Защиту латуней производят также с помощью ингибиторов коррозии, например, бензотриазола или толуолтриазола. Бензотриазол образует на поверхности пленку (< 5 нм), которая предохраняет латуни от коррозии в водных средах, различных атмосферах и других агентах. Коррозионные ингибиторы могут быть введены в состав лаков и защитной оберточной бумаги.

В случае электрохимической коррозии латунь при контакте с различными металлами и сплавами проявляет себя двояко: в одних случаях анодом, в других - катодом (табл. 6 ).


При контакте латуни с серебром, никелем, мельхиором, медью, алюминиевой бронзой, оловом и свинцом электрохимическая коррозия не происходит.

При нагреве латуни окисляются. Скорость окисления латуней с повышением температуры возрастает по экспоненте, удваиваясь приблизительно через каждые 360К. При температуре свыше 770К наблюдается испарение цинка наиболее интенсивно, если его концентрация в сплавах превышает 20 %.

Изменение некоторых физических и механических свойств латуней в зависимости от содержания цинка показано на рис. 6-9.





Типичные физические, механические и технологические свойства латуней приведены в п рил. 2, 3 , 4.




Специальные латуни, обрабатываемые давлением

Специальные или многокомпонентные латуни - это медно-цинковые сплавы сложных ком­позиций, в которых основными легирующими элементами являются алюминий, железо, мар­ганец, никель, мар­ганец, никель, кремний, олово и свинец. Эти элементы, как правило, вводят в латуни в таких количествах, чтобы они полностью растворялись в α и β фазах. Кроме указанных элементов в латуни вводят малые добавки мышьяка, сурьмы и других элементов.

Влияние легирующих элементов проявляется двояко: изменяются свойства фаз и/3) и относительные их количества, т.е. граница фазовых превраще­ний.

Для определения границ фазовых превраще­ний в системе или "кажущегося" ("фиктивного") содержания меди при добавлении легирующего элемента используют эмпирическое уравнение:

A= A *100/(100+ X *(K э-1)),

где А’ - кажущееся (фиктивное) содержание ме­ди, % (по массе); А - фактические содержание меди, % (по массе); X - содержание третьего ком­понента, % (по массе); Кэ - коэффициент Гинье, характеризующий влияние легирующего элемен­та на фазовый состав (при К э > 1, увеличивается количество β ’-фазы).

Значение Кэ для различных элементов: для Ni K э от -1,2 до -1,4, для Co K э=-1, для Mn K э=0,5, для Fe K э=0,9, для Pb K э=1, для Sn K э=2, для Al K э=6, для Si K э от 10 до 12.

Свинцовые латуни

Свинцовые латуни - медно-цинковые сплавы, легирован­ные свинцом. Диаграмма состояния системы Cu - Zn - Pb пред­ставлена на рис . 10.


Растворимость свинца в сплавах в твердом состоянии ничтожно мала. В двухфазных медно-цин­ковых сплавах (с содержанием Zn 40 %) растворимость свинца при 750°С в β -фазе немногим более 0,2%; при комнатной температуре свинец практически не растворим. В двухфазных латунях (в равновесном состоянии) свинец располагается внутри α и β -фаз и частично на границах этих фаз. Свинец при выделении его по границам фаз или зерен заметно ухудшает деформируемость латуней в горячем состоянии.

Свинец в сплавах а + β выполняет двоякую роль: с одной стороны он используется в качестве фазы, способствующей измельчению стружки, с другой - как смазка, снижающая коэффициент трения при обработке резанием. Эффективность добавок свинца определяется его количеством и структурой сплава, величиной и характером распределения частиц свинца, величиной зерна a -фазы, количеством и распределением β -фазы.

Улучшая обрабатываемость резанием свинец заметно снижает ударную вязкость латуней, ухудшает обрабатываемость давлением, пайку и сварку, полируемость и усложняет гальвани­ческую обработку поверхности изделий.

Прочностные характеристики свинцовых латуней с повышением температуры уменьшаются более интенсивно по сравнению с простыми латунями. Временное сопротивление разрыву латуней, содержащих около 2% свинца, при температуре 600°С составляет 10 МПа, при температуре 800°С - практически равно нулю.

В зависимости от обработки готовых деформированных полуфабрикатов свинцовые ла­туни классифицируют на три основных типа: для холодной обработки давлением, для горя­чей штамповки, для обработки на токарных автоматах.

Структура свинцови стых ла туней. обрабатываемых давле­нием в холодном состоянии, состоит из α-фазы и свинца, со­держание которого должно быть в таких пределах, чтобы обеспечить высокую обрабаты­ваемость резанием. К таким сплавам относятся латуни ма­рок ЛС74-3, ЛС64-2, JIC 63-3 и ЛС63-2.

Свинцовы е латун и, обрабатываемые давлением в горячем состоянии и предназначенные для горячей ковки и штамповки - двухфазные (α +β). Содержа­ние цинка в латунях должно быть таким, чтобы превраще­ние α + β в чистую β -фазу про­исходило полностью и при относительно низкой температуре.

Расчетное содержа­ние β -фазы состав­ляет около 20%. Содержание свинца от 1 до 3%. К та­ким латуням отно­сятся свинцовые латуни марок ЛС60-1, ЛС59-1 и ЛС59-3. Свинцовы е лату ни. применяемыедля обработки на то­карных автоматах и в микротехнике (т.е. для изготовления деталей, которые очень малы по раз­мерам, порядка 1 мм) - двухфазные, с высоким содержанием свинца; ЛС63-3 (с малым содержанием/3-фазы) и ЛС58-3 (с высоким содержанием β -фазы).

К латуням, применяемым в микротехнике, предъявляются особые требования по однород­ности химического состава, допускам по основным компонентам и микроструктуре (размер и распределение частиц свинца, количество и распределение β -фазы, величина зерна α -фазы). Однородность химического состава (гомогенность сплава) необходимо обеспечивать на не­больших участках.

Границы оптимизации микроструктуры свинцовых латуней для "микродеталей" определя­ются содержанием β -фазы от 10 до 30%, величиной зерна α -фазы - от 10 до 50 мк при среднем диаметре частиц свинца 1-5 мк.

Обработка свинцовых латуней. Оксиды различных элементов ухудшают обрабатываемость свинцовых латуней резанием, поэтому при их плавке и литье необходим тщательный контроль за их содержанием. Из элементов-примесей наиболее отрицательное влияние на обрабатыва­емость резанием оказывает железо, поэтому на его содержание установлены особые ограни­чения. Литье осуществляется двумя способами: в изложницы и полунепрерывным (непрерывным) способом. Для достижения стабильности химического состава предпочтитель­но отливать свинцовые латуни непрерывным (полунепрерывным) способом.

Свинец не оказывает влияния на температуру и процесс кристаллизации медно-цинковых сплавов, он затвердевает при 326°С и в случае выделения по границам зерен (фаз) ухудшает деформируемость в горячем состоянии двухфазных сплавов.

Области составов стандартных свинцовых латуней, обрабатываемых в горячем и холодном состояниях, показаны на рис. 11.


При горячей штамповке свинцовых латуней, содержащих 56-60% Cu (ЛС59-1), склонность к образованию трещин определяется главным образом температурой деформации. Оптималь­ный интервал температур, при котором не образуются трещины, доволно узок и находится в области температур, со­ставляющих линии на диаграмме состояния Cu - Zn , разграничивающих двухфазную α+ β и однофазную β -об­ласти.

Содержание свинца, а также легко­плавких примесей (висмута, сурьмы и других) не оказывает влияния на склонность к образованию трещин при горячей штамповке двухфазных свин­цовистых латуней (α+ β ).

Влияние химического состава на обрабатываемость резанием и давлением свинцовых лату­ней показано в табл. 7.


Свинцовые α-латуни обрабатывают в холодном состоянии, однако при определенных режимах возможно и горячее прессование.

Основными видами термической обработки свинцовых латуней являются полный рекристаллизационный отжиг и низкотемпературный отжиг для снятия внутренних напряжений.

Свинцовые латуни хуже, чем простые латуни, соединяются припоями, свариваются и пол­ируются. Для соединения свинцовых латуней не рекомендуется применять кислородно-ацетиленовую сварку, дуговую в среде защитного газа и дуговую с расходуемым электродом.

Ко ррозионная стойкость свинцовых латуней . Свинцовые латуни обладают: отличной устой­чивостью против воздействия чистых гидрокарбонатов, фреона, фторированных гидрокарбо- натовых охладителей и лаков; хорошей устойчивостью против воздействия промышленной, морской, сельской атмосфер, спиртов, дизельного топлива и сухого диоксида углерода; средней устойчивостью против воздействия сырой нефти и водяного диоксида углерода; плохой устой­чивостью против воздействия гидроксида аммония, хлористоводородной и серной кислот.

Олов янные лат уни

Олово незначительно влияет на изменение гра­ниц фазовых превращений, однако заметно изме­няет природу β -фазы. Диаграмма состояния сис­темы Cu - Zn - Sn приведена на рис . 12.


Двухфазные оловянные латуни обладают высо­кой коррозионной стойкостью во многих средах. При повышенном содержании олова в латунях появляется новая фаза γ. Фаза γ - хрупкая состав­ляющая, которая заметно ухудшает обрабатыва­емость латуни давлением в холодном состоянии. Появление γ -фазы в двухфазной латуни (а + /3) наблюдается при содержании олова свыше 0,5% (если содержание олова превышает этот предел, то при превращении β выделяется δ-фаза, обво­лакивающая α -фазу. Появление хрупких фаз ог­раничивает легирование латуней оловом. Содержание олова более 2% в латунях ухудшает их обрабатываемость в горячем состоянии. Стан­дартные оловянные латуни можно разделить на два типа: однофазные (α - твердый раствор) и трехфазные ( α + β + γ ).

Алюминиевые латуни

Алюминиевые латуни - медно-цинковые сплавы, в которых основной легирующей добавкой является алюминий.

Алюминий благодаря высокому коэффициенту Гинье (Кэ = 6) и значительной растворимо­сти в твердом состоянии по сравнению с другими элементами (кроме кремния) оказывает даже в небольших количествах заметное влияние на свойства латуни. Добавки алюминия повышают механические свойства и коррозионную стойкость латуней, но несколько ухудшают их пластичность. Количество вводимого алюминия ог­раничивается пределами, выше которых появляется хрупкая γ -фаза (рис . 13).


При содержании меди, % (по массе): 70; > / J 65; 60 предельные содер­жания алюминия, % (по массе): 6; 5 и 3 соответст­венно. В латунях, обраба­тываемых давлением, содержание алюминия не превышает 4%, в литейных высокопрочных ла­тунях 7%.

Легирование латуней производят одним алюминием или в определен­ных соотношениях с другими элементами (же­лезо, никель, марганец и др.).

Одним алюминием, как правило, легируют одно­фазные латуни (ЛА85-0,5, ЛА77-2). Для локализации обесцинкования и предотвращения коррозионного растрескивания при контакте с морской водой в однофазные алюминиевые латуни, содержащие более 15% Zn , вводят 0,02-0,04 As (ЛАМш77-2-0,05).

Избыток мышьяка (> 0,062%) ухудшает пластичность латуней. Алюминий совместно с железом (ЛАЖ60-1-1) и никелем (ЛАН59-3-2) вводят преимущественно в двухфазные лату­ни.

Железо улучшает пластичность латуней, содержащих свинец, в горячем состоянии измель­чает структуру и повышает их механические свойства; никель повышает коррозионную стойкость. Железо и никель несколько снижают пластичность латуней в холодном состоянии.

Легирование латуней алюминием, никелем и небольшими добавками марганца и кремния (ЛАНКМц75-2-2,5-0,5-0,5) делает их дисперсионно-твердеющими и существенно улучшает механические свойства, особенно упругие характеристики.

Однофазные алюминиевые латуни удовлетворительно обрабатываются давлением в горячем состоянии и хорошо - в холодном; двухфазные - хорошо в горячем состоянии и удовлетвори­тельно в холодном. Обрабатываемость резанием колеблется от 30 до 50% (по сравнению с латунью ЛС63-3).

Алюминиевые латуни по сравнению со свинцовыми хуже соединился припоями, но не­сколько лучше свариваются; по полируемости они близки к двухфазный простым латуням (таб л. 8).


Железосодержащие латуни

Добавки железа значительно измельчают структуру латуней, благодаря чему улучшаются механические свойства и технологические характеристики. Однако" сплавы системы Cu - Zn - Fe применяются редко. Распространение получили многокомпонентные латуни.

Марганцевые латуни

Легирование латуней марганцем заметно повышает их коррозионную стойкость при контакте с морской во­дой, хлоридами и перегретым паром.

Диаграмма состояния сплава систе­мы Cu - Zn - Mn приведена на рис. 14.


Добавки марганца оказывают незна­чительное влияние на структуру лату­ней. Однако марганец уменьшает стабильность упорядоченной решетки фазы β . При содержании Мп > 4,7% (ат.) в сплаве наблюдается частично неупорядоченное состояние при тем­пературе закалки от 520°С.

Наиболее благоприятное влияние на свойства и технологи­ческие характеристики латуни марганец оказывает в сочетании с другими легирующими элементами (алюминий, железо, оло­во, никель).

Кремнистые латуни

Кремний в твердом состоянии растворим в латунях в значи­тельных количествах, однако растворимость его понижается с увеличением содержания цинка. Область твердого раствора а под влиянием кремния и цинка резко сдвигается в сторону медного угла (рис. 15) .


С увеличением содержания кремния в структуре сплавов Cu - Zn - Si появляется новая фаза к гекса­гональной сингинии, которая при повышенных температурах пластичная и в отличие от β -фазы поляризуется. С понижением температуры (ниже 545°С) происходит эвтектоидный распад к-фазы в α + γ ".

Кремнистые латуни, содержащие 20% Zn и 4% Si для обра­ботки давлением не пригодны из-за малой пластичности. Для получения деформированных полуфабрикатов применяются кремнистые латуни, содержащие <4% Si .

Небольшие добавки кремния улучшают технологические характеристики латуней при литье и горячей обработке давлением, повышают ме­ханические свойства и антифрикционносгь

Никелевые латуни

Легирование ла­туней никелем повышает их механические свой­ства и коррозионную стойкость. Никеле­вые латуни более стойки по сравнению с другими латунями к обесцинкованию и коррозионному рас­трескиванию.

Как видно из диаграммы состояния сплава системы Cu - Zn - Ni (рис . 16), никель оказывает заметное влияние на структуру латуней, расширяя область твердого раствора α


При легировании никелем можно некоторые двухфазные латуни перевести в однофазные.

Легирование латуни Л62 никелем в количестве 2-3% (по массе) позволяет получить одно­фазный сплав с мелким зерном, высокими и однородными механическими свойствами и повышенной коррозионной стойкостью. Благодаря добавкам никеля при производстве дефор­мированных полуфабрикатов исключается появление такого отрицательного явления как строчечная структура.

Рекомендации по улучшению свойств медно-цинковых сплавов с учетом зарубежного опы­та. На свойства латуней наряду с чистотой исходных компонентов сплавов, способами и режимами плавки и литья большое влияние оказывают режимы их обработки и подготовка шихты.

Для уменьшения образования пористости и пузырей в листах (полосах) и лентах из латуни марок Л70, Л68, Л63 и Л60: избегать загрязнения шихты фосфором; отходы в виде стружки, содержащей масло, эмульсию и др. перед плавкой подвергать окислительному обжигу; добав­лять в расплав оксид меди в количестве 0,1-1,0 кг на 100 кг шихты; обращать особое внимание на оптимальные режимы литья и горячей прокатки; отжигать горячекатаные полосы перед холодной прокаткой.

Для увеличения сопротивления латуней Л68 и Л70 коррозионному растрескиванию необходимо уделять большое внимание подбору режима холодной прокатки и отжига. Сум­марное обжатие при последней холодной прокатке должно быть более 50%, оптимальная температура отжига - 260-280°С.

Для повышения сопротивления двухфазных латуней обесцинкованию (а это возможно, если доля β -фазы в структуре сплава составляет около 30%) необходимо термообработку проводить в интервале температур 400-700°С (в зависимости от состава сплава).

Для предотвращения обесцинкования латуней Л63 и получения качественной поверхно­сти при светлом отжиге (в колпаковых и шахтных печах) температуру рекристаллизационного отжига выдерживают в пределах 450-470°С. При этой температуре в течение 1-4 ч получают полосу (ленту) с размером зерна 0,035- 0,045 мм, временным сопротивлением разрыву 33-35 кгс/мм 2 и относительным удлинением 50%.

ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕДИ И ЛАТУНИ

Медь.

Медь применяют для производства листов, ленты, проволоки методом холодной деформации. В процессе деформации она теря-ет пластичность и приобретает упругость. Потеря пластичности затрудняет прокалку, протяжку и волочение, а в некоторых слу-чаях делает невозможной дальнейшую обработку металла.

Для снятия иагартовки или наклепа и восстановления пласти-ческих свойств меди проводят рекристаллизационный отжиг по режиму: нагрев до температуры 450—500° С со скоростью 200—220° С/ч, выдержка в зависимости от конфигурации и массы изделия от 0,5 до 1,5 ч, охлаждение на спокойном воздухе. Струк-тура металла после отжига состоит из равноосных кристаллов, прочность σв=190 МПа, относительное удлинение δ = 22%.

Латунь .

Сплав меди с цинком называют латунью. Различают двухкомпонентные (простые) латуни, состоящие только из меди, цинка и некоторых примесей, и многокомпонентные (специальные) латуни, в которые вводят еще один или несколько легирующих элементов (свинец, кремний, олово) для придания сплаву тех или иных свойств.

Двухкомпонентныелатуни в зависимости от способа обработки подразделяют на деформируемые и литейные.

деформируемые двухкомпонентные латуни (Л96, Л90, Л80, Л63 и др.) обладают высокой пластичностью и хорошо обрабаты-ваются давлением, их используют для изготовления листов, лен-ты, полос, труб, проволоки и прутков разного профиля.

Литейные латуни применяют для отливки фасонных деталей. В процессе холодной обработки давлением двухкомпонентные ла-туни, как и медь, получают наклеп, вследствие которого возраста-ет прочность и падает пластичность. Поэтому такие латуни под-вергают термической обработке — рекристаллизационному отжигу по режиму: нагрев до 450—650° С, со скоростью 180—200° С/ч, выдержка 1,5—2,0 ч и охлаждение на спокойном воздухе. Проч-ность латуни после отжига σ Β = 240-320 МПа, относительное уд-линение δ = 49-52%·

Латунные изделия с большим внутренним напряжением в ме-талле подвержены растрескиванию. При длительном хранении на воздухе на них образуются продольные и поперечные трещины. Чтобы избежать этого, изделия перед длительным хранением под-вергают низкотемпературному отжигу при 250—300° С.

Наличие в многокомпонентных (специальных) ла тунях легирующих элементов (марганца, олова, никеля, свин-ца и кремния) придает им повышенную прочность, твердость и высокую коррозионную стойкость в атмосферных условиях и мор-ской воде. Наиболее высокой устойчивостью в морской воде обла-дают латуни, легированные оловом, например ЛО70-1, ЛА77-2 и ЛАН59-3-2, получившие название морской латуни, их применяют в основном для изготовления деталей морских судов.

По способу обработки специальные латуни подразделяют на деформируемые и литейные. Деформируемые латуни используют для получения полуфабрикатов (листов, труб, ленты), пружин, деталей часов и приборов. Литейные многокомпонентные латуни применяют для изготовления полуфабрикатов и фасонных деталей методом литья (гребные винты, лопасти, детали арматуры и т.п.). Требуемые механические свойства специальной латуни обеспечи-вают термической обработкой их, режимы которой приведены в таблице. Для получения мелкого зерна перед глубокой вытяжкой деформируемые латуни для листов, лент, полос подвергают от-жигу при температуре 450—500° С.

Режимы термической обработки специальных латуней *

Марка сплава

Назначение обработки

Вид обработки

Темпера ту-ра нагрева, °С

Выдерж-ка, ч

Деформируемые латуни

Снятие наклепа

Рекристаллизацион-

ный отжиг

Снятие напряжений

Низкий отжиг

Литейные латуни

Снятие напряжений

Рекристаллизацион-

лый отжиг

* Охлаждающая среда — воздух.

ТЕРМИЧЕСКОЕ УПРОЧНЕНИЕ БРОНЗЫ

Бронза — сплав меди с оловом, свинцом, кремнием, алюмини-ем, бериллием и другими элементами. По основному легирующему элементу бронзы разделяют на оловянные и безоловянные (спе-циальные), по механическим свойствам — на деформируемые и литейные.

Деформируемые оловянные бронзы марок Бр.ОФ8-0,3, Бр.ОЦ4-3, Бр.ОЦС4-4-2,5 выпускают в виде прутков, лент, проволоки для пружин. Структура этих бронз состоит из α-твердого раствора. Основным видом термической обработки бронз является высокий отжиг по режиму: нагрев до 600—650° С, выдержка при этой температуре в течение 1—2 ч и быстрое охлаж-дение. Прочность после отжига σ в — 350-450 МПа, относительное удлинение б= 18—22%, твердость НВ 70—90.

Литейные оловянные бронзы марок Бр.ОЦ5-5-5, Бр.ОСНЗ-7-5-1, Бр.ОЦСЗ,5-7-5 используют для изготовления анти-фрикционных деталей (втулок, подшипников, вкладышей и др.). Литейные оловянные бронзы подвергают отжигу при 540—550° С в течение 60—90 мин.

Безоловянные бронзы Бр.5, Бр.7, Бр.АМц9-2, Бр.КН1-3 идругие марки имеют высокую прочность, хорошие антикоррози-онные и антифрикционные свойства. Из этих бронз изготовляют шестерни, втулки, мембраны и другие детали. Для облегчения обработки давлением бронзы подвергают гомогенизации при 700—750° С с последующим быстрым охлаждением. Отливки, име-ющие внутренние напряжения, отжигают при 550° С с выдержкой 90—120 мин.

Наиболее часто в промышленности применяют двойные -алюминиевые бронзы марок Бр.А5, Бр.А7 и бронзы, до-бавочно легированные никелем, марганцем, железом и другими элементами, например Бр.АЖН10-4-4. Эти бронзы используют для различных втулок, фланцев, направляющих седел, шестерен и других небольших деталей, испытывающих большие нагрузки.

Двойные алюминиевые бронзы подвергают закалке и отпуску по режиму: нагрев под закалку до 880—900° С со скоростью 180—200° С/ч, выдержка при этой температуре 1,5—2 ч, охлажде-ние в воде; отпуск при 400—450° С в течение 90—120 мин. Струк-тура сплава после закалки состоит из мартенсита, после отпус-ка—из тонкой механической смеси; прочность бронзы σ в = 550МПа, δ = 5%, твердость НВ 380—400.

Бериллиевая бронза Бр.Б2 — сплав меди с бериллием. Уникальные свойства — высокая прочность и упругость при одно-временной химической стойкости, немагнитность и способность к термическому упрочнению — все это делает бериллиевую бронзу незаменимым материалом для изготовления пружин часов и при-боров, мембран, пружинистых контактов и других деталей. Высо-кая твердость и немагнитность позволяют использовать бронзу в качестве ударного инструмента (молотки, зубила), не образующе-го искр при ударе о камень и металл. Такой инструмент применя-ют при работах во взрывоопасных средах. Бронзу Бр.Б2 закали-вают при 800—820° С с охлаждением в воде, а затем подвергают искусственному старению при 300—350° С. При этом прочность сплава σ Β =1300 МПа, твердость HRC37—40.

ТЕРМИЧЕСКОЕ УПРОЧНЕНИЕ АЛЮМИНИЕВЫХ СПЛАВОВ

Деформируемые алюминиевые сплавы разделяют на неупрочняемые термической обработкой и упрочняемые. Кнеупрочняемым алюминиевым сплавам относят сплавы марки АМц2, АМг2, АМгЗ, имеющие невысокую прочность и высокую пластич-ность; их применяют для изделий, получаемых глубокой вытяж-кой, упрочняют холодной обработкой давлением (нагартовкой).

Наиболее распространены сплавы, упрочняемые термической обработкой. К ним относят дюралюминий марок Д1, Д16, Д3П, в состав которых входят алюминий, медь, магний и марганец. Ос-новными видами термического упрочнения дюралюминия являют-ся закалка и старение. Закалку проводят при 505—515° С с после-дующим охлаждением в холодной воде. Старение применяют как естественное, так и искусственное. При естественном старении сплав выдерживают в течение 4—5 сут, при искусственном — 0,8—2,0 ч; температура старения — не ниже 100—150°С; проч-ность после обработки σ Β = 490 МПа, 6=14%. Сплавы Д1 и Д16 применяют для изготовления деталей и элементов строительных конструкций, а также изделий для летательных аппаратов.

Авиаль (АВ, АВТ, АВТ1)—это деформируемый сплав, обла-дающий более высокой пластичностью, свариваемостью и корро-зионной стойкостью, чем дюралюминиевые; подвергают закалке в воде при 515—525° С и старению: сплавы АВ и АВТ — естествен-ному, сплав АВТ1 — искусственному при 160° С с выдержкой 12—18 ч. Применяют авиаль для производства листов, труб, ло-пастей винтов вертолетов и т. п.

Высокопрочные (σ в =550-700 МПа) алюминиевые сплавы В95 и В96 имеют меньшую пластичность, чем дюралюминий. Термиче-ская обработка этих сплавов заключается в закалке при 465—475° С с охлаждением в холодной или горячей воде и искус-ственном старении при 135—145° С в течение 14—16 ч. Применяют сплавы в самолетостроении для нагруженных конструкций, работающих длительное время при 100—200° С.

Ковочные алюминиевые сплавы марок АК1, АК6, АК8 подвер-гают закалке при 500—575° С с охлаждением в проточной воде и искусственному старению при 150—165° С с выдержкой 6—15 ч; прочность сплава σ Β = 380-460 МПа, относительное удлинение δ = 7-10%.

Литейные алюминиевые сплавы называют силуми-нами. Наиболее распространены термически упрочняемые сплавы марок АЛ4, АЛ6 и АЛ20 Отливки из сплавов АЛ4 и АЛ6 зака-ливают при 535—545° С с охлаждением в горячей (60—80° С) воде и подвергают искусственному старению при 175° С в течение 2—3 ч; после термической обработки σ в =260 МПа, δ = 4-6%, твердость НВ 75—80. Для снятия внутренних напряжений отливки из этих сплавов отжигают при 300° С в течение 5—Ю ч с охлаж-дением на воздухе. Жаропрочные сплавы марок АЛ 11 и АЛ20, идущие для изготовления поршней, головок цилиндров, топок кот-лов, работающих при 200—300° С, подвергают закалке (нагрев до 535—545° С, выдержка при этой температуре в течение 3—6 ч и охлаждение в проточной воде), а также стабилизирующему отпус-ку при 175—180° С в течение 5—10 ч; после термической обработ-ки σ в =300-350 МПа, δ=3-5%.

ТЕРМИЧЕСКАЯ ОБРАБОТКА МАГНИЕВЫХ И ТИТАНОВЫХ СПЛАВОВ

Магниевые сплавы.

Основными элементами в магниевых спла-вах (кроме магния) являются алюминий, цинк, марганец и цир-коний. Магниевые сплавы делят на деформируемые и литейные.

Деформируемые магниевые сплавы марок МА1, МА8, МА14 подвергают термическому упрочнению по режиму: на-грев под закалку до 410—415° С, выдержка 15—18 ч, охлаждение на воздухе и искусственное старение при 175° С в течение 15—16 ч; после термообработки σ Β = 320~430 МПа, δ = 6-14%. Сплавы МА2, МАЗ и МА5 термической обработке не подвергают; их при-меняют для изготовления листов, плит, профилей и поковок.

Химический состав литейных магниевых сплавов (МЛ4, МЛ5, МЛ12 и др.) близок к составу деформируемых, но пластичность и прочность литейных сплавов значительно ниже. Это связано с грубой литейной структурой сплавов Термическая обработка отливок с последующим старением способствует раство-рению избыточных фаз, сконцентрированных по границам зерен и повышению пластичности и прочности сплава.

Особенностью магниевых сплавов является малая скорость диффузионных процессов (фазовые превращения протекают мед-ленно), что требует большой выдержки под закалку и старение. По этой причине закалка сплавов возможна только на воздухе. Старение литейных магниевых сплавов проводят при 200—300° С; под закалку их нагревают до 380—420° С; после закалки и старе-ния σ в = 250-270 МПа.

Магниевые сплавы можно применять, как жаропрочные, спо-собные работать при температурах до 400° С. Вследствие высокой удельной прочности магниевые сплавы широко применяют в авиа-ции, ракетостроении, автомобильной и электротехнической про-мышленности. Большим недостатком магниевых сплавов является низкая стойкость против коррозии во влажной атмосфере.

Титановые сплавы.

Титан является одним изважнейших совре-менных конструкционных материалов; обладает высокой проч-ностью, повышенной температурой плавления (1665° С), малой плотностью (4500 кг/м 3) и высокой коррозионной стойкостью даже в морской воде. На основе титана образовывают сплавы повышен-ной прочности, широко применяемые в авиации и ракетостроении, энергомашиностроении, судостроении, химической промышленности и других областях промышленности. Основными добавками в ти-тановых сплавах являются алюминий, молибден, ванадий, марга-нец, хром, олово и железо.

Титановые сплавы марок ВТ5, ВТ6-С, ВТ9 и ВТ16 подвергают отжигу, закалке и старению. Полуфабрикаты (прутки, поковки, трубы) из сплава, дополнительно легированного оловом (ВТ5-1), проходят рекристаллизационный отжиг при 700—800° С в целях снятия наклепа. Листовые титановые сплавы отжигают при 600—650° С. Длительность отжига поковок, прутков и труб состав-ляет 25—30 мин, алистов — 50—70 мин.

Высоконагруженные детали из сплава ВТ14, работающие при температуре 400° С, закаливают с последующим старением по ре-жиму: температура закалки 820—840° С, охлаждение в воде, ста-рение при 480—500° С в течение 12—16 ч; после закалки и старе-ния: σ в =1150-1400 МПа, 6 = 6—10%, твердость HRC56—60.

Вас интересует отжиг, закалка и термическая обработка латуни? Поставщик Evek GmbH предлагает купить латунь по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.

Выбор технологии

Виды термической обработки латуни определяются процентным содержанием цинка в сплаве, а также видом диаграммы состояния, к какому типу латуни принадлежит сплав — к однофазной или к двухфазной. Поставщик Evek GmbH предлагает купить латунный прокат отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.

Термообработка однофазных (простых) латуней

Для таких разновидностей используют рекристаллизационный или обычный отжиг. Цель — снять внутренние напряжения, которые могут появиться в процессе пластического деформирования материала. Режим отжига зависит от концентрации цинка в сплаве: с увеличением данного параметра требуемая температура термообработки снижается, но не более, чем до 300 °C. Эффективность отжига зависит от конечного размера зёрен в микроструктуре. Их устанавливают по показаниям металло-инструментального микроскопа, либо по эталонным структурам, которые приводятся в ГОСТ 5362 .

Атмосфера для отжига

Не рекомендуется выполнять термообработку в обычной атмосфере, содержащей значительное количество кислорода. Это приводит к неравномерному уменьшению величины зерна, а на поверхности сплава чётко выделяются пятна окислов, которые приходится удалять травлением сплава в растворе ортофосфорной кислоты, либо двуххромовокислого калия. Более эффективным методом термообработки является вакуумный отжиг, либо использование защитной атмосферы инертных газов. При этом одновременно снижается и выгорание цинка.

Термообработка двухфазных латуней

Многофазные латуни получаются при добавлении других, кроме цинка, легирующих элементов — железа, алюминия, свинца и т. п. Каждая из латунных марок имеет свою температуру рекристаллизационного отжига. Чаще всего применяются следующие режимы:

Купить. Поставщик, цена

Вас интересует отжиг, закалка и термическая обработка латуни? Поставщик Evek GmbH предлагает купить латунь по цене производителя. Обеспечим доставку продукции в любую точку континента. Цена оптимальная. Приглашаем к партнёрскому сотрудничеству.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении